Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = VLSI cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12683 KiB  
Article
Reduction of Device Operating Temperatures with Graphene-Filled Thermal Interface Materials
by Jacob S. Lewis
C 2021, 7(3), 53; https://doi.org/10.3390/c7030053 - 21 Jul 2021
Cited by 10 | Viewed by 3946
Abstract
The majority of research into few layer graphene (FLG) thermal interface materials (TIM) concerns the direct quantification of innate composite properties with much less direct analysis of these materials in realistic applications. In this study, equilibrium temperatures of engineered device substitutes fixed to [...] Read more.
The majority of research into few layer graphene (FLG) thermal interface materials (TIM) concerns the direct quantification of innate composite properties with much less direct analysis of these materials in realistic applications. In this study, equilibrium temperatures of engineered device substitutes fixed to passive heat sink solutions with varying FLG concentration TIMs are experimentally measured at varying heat dissipation rates. A custom, precisely-controlled heat source’s temperature is continually measured to determine equilibrium temperature at a particular heat dissipation. It is found that altering the used FLG TIM concentrations from 0 vol.% to as little as 7.3 vol.% resulted in a decrease of combined TIM and passively-cooled heat sink thermal resistance from 4.23C/W to 2.93C/W, amounting to a reduction in operating temperature of ≈108C down to ≈85C at a heat dissipation rate of 20 W. The results confirm FLG TIMs’ promising use in the application of device heat dissipation in a novel, controllable experimental technique. Full article
Show Figures

Graphical abstract

19 pages, 11026 KiB  
Article
Conjugate Heat Transfer and Fluid Flow Modeling for Liquid Microjet Impingement Cooling with Alternating Feeding and Draining Channels
by Tiwei Wei, Herman Oprins, Vladimir Cherman, Eric Beyne and Martine Baelmans
Fluids 2019, 4(3), 145; https://doi.org/10.3390/fluids4030145 - 1 Aug 2019
Cited by 19 | Viewed by 7388
Abstract
Liquid microjet impingement cooling has shown the potential to be the solution for heat removal from electronic devices such as very-large-scale integration (VLSI) chips. The post-impingement dynamics of the jet, specifically the interaction between the liquid fronts on the surface engendered by the [...] Read more.
Liquid microjet impingement cooling has shown the potential to be the solution for heat removal from electronic devices such as very-large-scale integration (VLSI) chips. The post-impingement dynamics of the jet, specifically the interaction between the liquid fronts on the surface engendered by the jets is a critical criterion improving the heat transfer characteristics. While some seminally important experimental studies have investigated this attribute, the amount of accurate data and analysis is limited by the shortcomings of real-life experiments. In this article, numerical investigations into the fluid dynamics and heat transfer in microjet cooling systems are carried out. Specifically, this paper addresses the question regarding the necessary fidelity of the simulations. Different Reynolds-averaged Navier–Stokes (RANS) models are compared to the Large Eddy Simulations (LES) simulation and the potential fidelity of different eddy-viscosity-based closures is clearly shown. Recommendations are made regarding the RANS closures that should give the best performance. It is demonstrated that the transition Shear Stress Transport (SST) model and k - ω SST model both show excellent ability to predict the local or average Nu, and also local level pressure coefficient f with less than 5% difference in the range of 30 < Red < 4000, compared with the reference LES model. For the experimental measurements in the range of 130 < Red < 1400, the LES model, transition SST model and k - ω SST model all show less than 25% prediction error. Moreover, it is shown that the validity of the unit cell assumption for the temperature and flow distribution depends on the flow rate. Full article
(This article belongs to the Special Issue Coupled Flow and Heat or Mass Transport)
Show Figures

Figure 1

Back to TopTop