Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Urocyon littoralis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3126 KiB  
Article
Population Genetics of California Gray Foxes Clarify Origins of the Island Fox
by Benjamin N. Sacks, Mark J. Statham, Laurel E. K. Serieys and Seth P. D. Riley
Genes 2022, 13(10), 1859; https://doi.org/10.3390/genes13101859 - 14 Oct 2022
Cited by 6 | Viewed by 3213
Abstract
We used mitochondrial sequences and nuclear microsatellites to investigate population structure of gray foxes (Urocyon cinereoargenteus) and the evolutionary origins of the endemic island fox (Urocyon littoralis), which first appeared in the northern Channel Islands <13,000 years ago and [...] Read more.
We used mitochondrial sequences and nuclear microsatellites to investigate population structure of gray foxes (Urocyon cinereoargenteus) and the evolutionary origins of the endemic island fox (Urocyon littoralis), which first appeared in the northern Channel Islands <13,000 years ago and in the southern Channel Islands <6000 years ago. It is unclear whether island foxes evolved directly from mainland gray foxes transported to the islands one or more times or from a now-extinct mainland population, already diverged from the gray fox. Our 345 mitochondrial sequences, combined with previous data, confirmed island foxes to be monophyletic, tracing to a most recent common ancestor approximately 85,000 years ago. Our rooted nuclear DNA tree additionally indicated genome-wide monophyly of island foxes relative to western gray foxes, although we detected admixture in northern island foxes from adjacent mainland gray foxes, consistent with some historical gene flow. Southern California gray foxes also bore a genetic signature of admixture and connectivity to a desert population, consistent with partial replacement by a late-Holocene range expansion. Using our outgroup analysis to root previous nuclear sequence-based trees indicated reciprocal monophyly of northern versus southern island foxes. Results were most consistent with island fox origins through multiple introductions from a now-extirpated mainland population. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

20 pages, 2229 KiB  
Article
Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox (Urocyon littoralis catalinae)
by Sarah A. Hendricks, Julie L. King, Calvin L. Duncan, Winston Vickers, Paul A. Hohenlohe and Brian W. Davis
Genes 2022, 13(8), 1496; https://doi.org/10.3390/genes13081496 - 22 Aug 2022
Cited by 4 | Viewed by 3791
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island [...] Read more.
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007–2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population. Full article
(This article belongs to the Special Issue Advances in Canine Genetics)
Show Figures

Figure 1

Back to TopTop