Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = UV seed sterilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11678 KiB  
Article
UV-C Seed Surface Sterilization and Fe, Zn, Mg, Cr Biofortification of Wheat Sprouts as an Effective Strategy of Bioelement Supplementation
by Katarzyna Czarnek, Małgorzata Tatarczak-Michalewska, Piotr Dreher, Vishnu D. Rajput, Grzegorz Wójcik, Anna Gierut-Kot, Agnieszka Szopa and Eliza Blicharska
Int. J. Mol. Sci. 2023, 24(12), 10367; https://doi.org/10.3390/ijms241210367 - 20 Jun 2023
Cited by 9 | Viewed by 3668
Abstract
Metalloenzymes play an important role in the regulation of many biological functions. An effective way to prevent deficiencies of essential minerals in human diets is the biofortification of plant materials. The process of enriching crop sprouts under hydroponic conditions is the easiest and [...] Read more.
Metalloenzymes play an important role in the regulation of many biological functions. An effective way to prevent deficiencies of essential minerals in human diets is the biofortification of plant materials. The process of enriching crop sprouts under hydroponic conditions is the easiest and cheapest to conduct and control. In this study, the sprouts of the wheat (Triticum aestivum L.) varieties Arkadia and Tonacja underwent biofortification with Fe, Zn, Mg, and Cr solutions in hydroponic media at four concentrations (0, 50, 100, and 200 µg g−1) over four and seven days. Moreover, this study is the first to combine sprout biofortification with UV-C (λ = 254 nm) radiation treatment for seed surface sterilization. The results showed that UV-C radiation was effective in suppressing seed germination contamination by microorganisms. The seed germination energy was slightly affected by UV-C radiation but remained at a high level (79–95%). The influence of this non-chemical sterilization process on seeds was tested in an innovative manner using a scanning electron microscope (SEM) and EXAKT thin-section cutting. The applied sterilization process reduced neither the growth and development of sprouts nor nutrient bioassimilation. In general, wheat sprouts easily accumulate Fe, Zn, Mg, and Cr during the applied growth period. A very strong correlation between the ion concentration in the media and microelement assimilation in the plant tissues (R2 > 0.9) was detected. The results of the quantitative ion assays performed with atomic absorption spectrometry (AAS) using the flame atomization method were correlated with the morphological evaluation of sprouts in order to determine the optimum concentration of individual elements in the hydroponic solution. The best conditions were indicated for 7-day cultivation in 100 µg g−1 of solutions with Fe (218% and 322% better nutrient accumulation in comparison to the control condition) and Zn (19 and 29 times richer in zinc concentration compared to the sprouts without supplementation). The maximum plant product biofortification with magnesium did not exceed 40% in intensity compared to the control sample. The best-developed sprouts were grown in the solution with 50 µg g−1 of Cr. In contrast, the concentration of 200 µg g−1 was clearly toxic to the wheat sprouts. Full article
(This article belongs to the Special Issue Emerging Topics in Metal Complexes: Pharmacological Activity)
Show Figures

Figure 1

21 pages, 2042 KiB  
Review
Protoplast Technology and Somatic Hybridisation in the Family Apiaceae
by Ankush S. Ranaware, Nandkumar S. Kunchge, Smita S. Lele and Sergio J. Ochatt
Plants 2023, 12(5), 1060; https://doi.org/10.3390/plants12051060 - 27 Feb 2023
Cited by 16 | Viewed by 7277
Abstract
Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to [...] Read more.
Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to use biotechnology approaches including somatic hybridization. We discuss the use of protoplast technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays) and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration. Although there are no alternatives to somatic hybridization, various approaches also discussed are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait identification and selection. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture)
Show Figures

Figure 1

28 pages, 2447 KiB  
Review
Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth
by Ryza A. Priatama, Aditya N. Pervitasari, Seungil Park, Soon Ju Park and Young Koung Lee
Int. J. Mol. Sci. 2022, 23(9), 4609; https://doi.org/10.3390/ijms23094609 - 21 Apr 2022
Cited by 80 | Viewed by 9649
Abstract
Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows [...] Read more.
Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows pesticide removal, and enhances biomass and yield. Currently, the complex molecular mechanisms of plasma treatment in plasma agriculture are fully unexplored, especially those related to seed germination and plant growth. Therefore, in this review, we have summarized the current progress in the application of the plasma treatment technique in plants, including plasma treatment methods, physical and chemical effects, and the molecular mechanism underlying the effects of low-temperature plasma treatment. Additionally, we have discussed the interactions between plasma and seed germination that occur through seed coat modification, reactive species, seed sterilization, heat, and UV radiation in correlation with molecular phenomena, including transcriptional and epigenetic regulation. This review aims to present the mechanisms underlying the effects of plasma treatment and to discuss the potential applications of plasma as a powerful tool, priming agent, elicitor or inducer, and disinfectant in the future. Full article
(This article belongs to the Special Issue Plasma-Activated Seed Germination)
Show Figures

Figure 1

6 pages, 958 KiB  
Communication
Exposure to Ultraviolet (UV-C) Radiation Increases Germination Rate of Maize (Zea maize L.) and Sugar Beet (Beta vulgaris) Seeds
by Pouria Sadeghianfar, Meisam Nazari and Gunter Backes
Plants 2019, 8(2), 49; https://doi.org/10.3390/plants8020049 - 24 Feb 2019
Cited by 36 | Viewed by 7138
Abstract
This study investigated the effect of ultraviolet (UV-C) radiation on the germination percentage, germination rate, radicle length, and plumule length of maize and sugar beet seeds. The experiment was implemented in six replicates of 30 seeds per replicate and in sterilized petri dishes [...] Read more.
This study investigated the effect of ultraviolet (UV-C) radiation on the germination percentage, germination rate, radicle length, and plumule length of maize and sugar beet seeds. The experiment was implemented in six replicates of 30 seeds per replicate and in sterilized petri dishes under laboratory conditions. Treatments included UV-C (254 nm) radiation exposure durations of 0 min (control), 30 min, 2 h, 4 h, 8 h, and 12 h. The UV-C radiation treatments did not significantly affect the germination percentage of the seeds (p < 0.05). However, the seeds germination rate was significantly affected by the UV-C radiation treatments. The treatments of 8 h and 12 h exposure duration led to the highest seed germination rates in maize and sugar beet, respectively. Lowest seed germination rates belonged to the controls. The radicle length of maize seeds was significantly affected by the UV-C radiation treatments, but the treatments did not significantly affect the radicle length of sugar beet seeds. The 12 h exposure to UV-C radiation treatment resulted in the largest radicle in maize, which was 2.08 cm larger than the radicle of the control seeds. The UV-C radiation treatments had a statistically significant effect on the plumule length of maize and sugar beet seeds. The treatment 8 h UV-C exposure duration led to the largest plumule in maize and sugar beet, which were 0.32 cm and 0.83 cm larger than the plumule of the control seeds, respectively. Breaking down the seed coat and increasing the temperature by UV-C radiation are potential reasons for the observed positive effects. Full article
Show Figures

Figure 1

Back to TopTop