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Abstract: Species of the family Apiaceae occupy a major market share but are hitherto dependent
on open pollinated cultivars. This results in a lack of production uniformity and reduced quality
that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to
use biotechnology approaches including somatic hybridization. We discuss the use of protoplast
technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial
traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-
sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes
are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays)
and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are
reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by
new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials
and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on
the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration.
Although there are no alternatives to somatic hybridization, various approaches also discussed
are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait
identification and selection.

Keywords: biotechnological breeding; carrot; celery; cybrids; male sterility; protoplast isolation
and fusion

1. Introduction

The rapidly growing population has made crop improvement for enhancing yield and
quality to center stage, in order to serve the ever-increasing food needs. Since the onset of
crop improvement, almost ten thousand years ago, selection and breeding have been used
routinely and continuously for crop improvement, as stressed by the late eminent plant
molecular biologist, Lawrence Bogorad from Harvard University [1]. The limited range of
genes accessible through conventional sexual breeding within crossable plants species has
hindered the introduction of genes or traits of interest. Thus, for many crops a long period
is required for the purification and selection process for a desired trait or gene in a new
genotype. Technology advancement in the manipulation of cells in vitro and genetic engi-
neering offer an alternative to conventional plant breeding and provide novel approaches
for gene pooling that hitherto were not available naturally in the environment [2].

At present, the role of agriculture in ensuring food security is strategic to meet the
increasingly growing population demand and simultaneously address the very many
up-surging environmental challenges resulting from global warming [3]. According to
the most recent United Nations estimates (https://www.worldometers.info/; accessed on
3 February 2023), the world population reached 7.93 billion in March 2022. However, it
would more likely exceed 9 billion according to an AsiaNews (PIME) report that already in
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2017 about a billion people around the world had no identities and were hence invisible.
Still, their need for food adds to the huge demand that already exceeds the current produc-
tion globally (https://www.asianews.it/news-en/About-a-billion-people-are-invisible,
-one-third-of-them-children-42131.html) (accessed on 9 December 2022). It is therefore
necessary to rapidly boost food output without expanding agricultural lands but also using
less water, fertilizers, pesticides and herbicides per cultivated hectare in order to reduce
emissions from production processes and environmental pollution.

Crops of importance for our diet under cultivation on the planet cover different
surfaces and produce variable yields (Figure 1). Amongst them, open-pollinated cultivars
are majoritarian in the market for members of the family Apiaceae, such as carrot (Daucus
carota), celery and celeriac (Apium graveolens var. dulce and var. rapaceum, respectively).
Such cultivars, although productive, often lack uniformity and yield regularity and these
problems may be resolved by developing and using hybrid seeds. The availability of
high-quality male sterile lines is of paramount importance in this respect and remains
currently a bottleneck for hybrid breeding of crops in the family Apiaceae.
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United Nations (https://www.fao.org/faostat/en/#data/QCL) (accessed on 10 February 2022).

In this respect, male sterility results from the failure to produce either dehiscent
anthers, functional pollen, and/or viable gametes. Its evolutionary importance has long
been recognized but its breeding utility was initially ignored, until the breeding potential of
hybrid vigor as a means of studying the influence of cytoplasm on plant development was
acknowledged. However, if the offspring of any cross between two genetically different
plants can be considered to be a hybrid, the process is not that simple. Indeed, in self-fertile
crops it requires emasculation of flowers, which is laborious and costly or, when performed
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chemically, is environmentally unfriendly. Hence the great interest of male-sterile genotypes
for such crops [4].

In this review, we focus particularly on both genetic (GMS) and cytoplasmic (CMS)
male sterility [4,5], on the candidate genes involved in the process, and on the production
of such male sterile genotypes through somatic hybridization. Thus, we review the pre-
treatments of donor plants, the different tissues used as sources of the parental protoplasts,
the methods for obtaining somatic hybrids and cybrids as well as their subsequent culture.
Crucial steps for understanding cell wall regeneration in species of the family Apiaceae are
also discussed.

2. The Role of Male Sterility in Plant Breeding

There are two sources of male sterility, genetically encoded (GMS) and cytoplasmic
(CMS), which bypass the time-consuming work of flower emasculation in umbels of
crops in the family Apiaceae. GMS is determined only by genes encoded in the nuclear
genome [4], while CMS is due to mitochondrial genes that affect nuclear gene functions
directly or indirectly.

3. Genetically Encoded Male Sterility (GMS)

GMS is under the control of various nuclear male sterility genes that are not influenced
by cytoplasmic sequences. As a result of this, in a simple genetic situation with a Mendelian
inheritance pattern there will be three possible genotypes for the nuclear locus MS (Male
Sterility), where the male sterile phenotype is determined by the allele at its recessive
(ms) status (Figure 2). Therefore, for such a male sterile genotype (which in breeding
would represent the female line), the offspring may be 100% male fertile (for a parental line
homozygous for the nuclear restorer-of-fertility locus) or segregate 1:1 yielding 50% male
sterile: 50% male fertile plants (for a heterozygous parent).

Using GMS for breeding requires availability of a male sterile line (the female parent),
a maintainer line (isogenic but for the presence of a dominant MS allele), and a restorer line
(the male parent, which has dominant restorer-of-fertility alleles Rf and thus produces fertile
F1 hybrids). In this context, the segregation in the cross with the maintainer line introduces
an additional selection step among male sterile phenotypes to remove all heterozygotes for
the production of hybrid seeds, which has limited the use of GMS in crops where CMS is
not available. Cytoplasmic male sterility (CMS) has been observed in more than 300 species
to date [5]. This laborious practice of handling a male sterile line, a maintainer line and a
restorer line simultaneously in the GMS system can be overcome by environment-sensitive
genic male sterility (EGMS). Thus, in rice 5 to 10% higher yield is obtained with respect to
land area based on EGMS system. EGMS plays a crucial role in selection of male sterility
dependent on sensitivity and adaption to the environmental factors such as high or low
temperature, humidity and photoperiod [6]. In a rapeseed TGMS (thermosensitive genic
male sterile) line, a temperature above 20 ◦C resulted in an alteration of gene expression
due to a defect of homologous pairing in meiosis I [7].

In wheat, a TGMS line was fertile at 20 ◦C and sterile at 10 ◦C as a result of miRNA
differential expression [8]. Recently, Zhu and colleagues hypothesized that in an Arabidop-
sis TGMS line low temperature slowed down pollen development which in turn helped in
restoring fertility of the thermo-sensitive male sterile plant [9].
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4. Cytoplasmic Male Sterility (CMS)

CMS, being maternally inherited, is the preferred material since it permits a better
control of hybrid seed production [10]. It has been increasingly applied to a number of
major cereal, vegetable, legume, oilseed, industrial and ornamental crops, including various
members of the family Apiaceae on which this review is focused. However, it must be
stated that in general the hybrids developed have a narrow genetic base due to the use of
a very limited number of sources of CMS in plant breeding. Therefore, future research in
this domain should concentrate on widening the range of cytoplasmic genes that produce
male sterile phenotypes as also their respective nuclear-encoded restorer-of-fertility genes.
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The recent advent of new genetic tools to study the dynamics of the mitochondrial genome
as well as its interaction with the nuclear genes offers novel experimental frameworks to
efficiently address these challenges [11,12].

CMS phenotypes have often arisen in wild populations through spontaneous muta-
tions involving rearrangements of the mitochondrial genome (mtDNA), which resulted
from intragenomic homologous or non-homologous recombination events and created new
open reading frames (ORFs) [13]. Disruption of the nuclear gene Msh1 by a transgenic RNAi
approach in both tomato and tobacco led to stoichiometry in plant mitochondria which
allowed expression of the CMS phenotype ORFs which were at low copy number [14]. Yet,
in onion the existence of the CMS ORF in fertile lines at extremely low concentrations plays
an important role for the expression of ORF [15]. A full understanding of the molecular
mechanisms underlying the CMS condition remains difficult because of its uniqueness in
terms of the mitochondrial genes associated with the male sterility condition [16]. Further-
more, there are, for instance, CMS lines frequently used in rice breeding where a specific
restorer line was developed but the identity of the gene responsible for the male sterility
condition is still not known [17,18].

Figure 2 also depicts a scheme of the genetic model of CMS.
Mitochondrial dysfunction is caused by nuclear MADS-box genes that control whorls

2, 3 and even whorl 1. Out of 16 MADS-box genes, DcPI and DcAG-like genes showed a
significantly lowered expression in petaloid CMS lines. Among 12 differentially expressed
genes of oxidative phosphorylation, the two genes DcNad2 and DcNad5, which encode
NADH dehydrogenase had a significantly lower expression in a petaloid CMS line of carrot
as compared to the maintainer line. This led to the formation of a petaloid or carpeloid
CMS system, due to energy deficiency in mitochondria which constitute the cell power-
house [19]. This shows a larger energy requirement of reproductive organs compared to
other organs. Likewise, in species of other families e.g., wild beet, constitutive mRNA
expression of orf129 of CMS protein was observed in flowers, leaves and roots, but it only
affected the anther development and led to male sterility. In maize, too, CMS-T protein also
governs cytotoxic activity resulting in male sterility, while it is also toxic to Escherichia coli
and eukaryotic cells. Thus, to date, CMS proteins were reported in sunflower, radish, rice,
Brassica sp., among others [4].

Programmed cell death (PCD) is a necessary developmental event that regularly hap-
pens in animals and plants. For plants, it involves developmental processes such as seed
germination, root tip elongation, xylem and aerenchyma formation, organ development,
senescence and disease resistance, among others [20]. PCD also plays an important role
in CMS development through a co-operative interaction between the anther wall and
the microspores. Such interaction requires the cellular degradation of the innermost cell
layer of the anther (tapetum) which surrounds the microspores [21]. In a carpeloid CMS
line of carrot, the expression of two nuclear located MADS-box genes DcMADS2 and
DcMADS3 was suppressed in developing flowers of whorls 2 and 3, which are homologues
to GLOBOSA and DEFICIENS of the Antirrhinum genes [22]. In Citrus, expression analysis
found an involvement of miRNAs targeting transcription factors involved in floral devel-
opment of Citrus grandis (male sterile cybrid pummelo), such as auxin response factors
(ARFs), MYB, SQUAMOSA promoter binding protein box (SBP-box), APETALA2 (AP2),
basic region-leucine zipper (bZIP) and transport inhibitor response 1 (TIR1). This indicated
a strong interaction between mitochondrial CMS genes and nuclear MADS-box genes,
while nuclear-cytoplasmic retrograde signaling must be playing an important role in CMS
flower development through miRNA expression as well [23].

Alternatively, a fertile line and a CMS line can be combined through somatic hy-
bridization to give a male-sterile plant with a chimeric mitochondrial genome, as the
limited homologous recombination yields a mtDNA with few regions from the CMS parent,
whereby candidate genes for CMS may be proposed [24]. Conversely, if mtDNA rearrange-
ments generate numerous new ORFs, a differential expression assay and/or a segregation
analysis will be required for the identification of the CMS candidate [25]. On the other
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hand, some CMS systems have recently been linked to intron splicing and RNA editing,
where cytidines are changed to uridines in specific editing sites located in diverse posi-
tions of mitochondrial mRNAs [13]. This alters organellar protein products, and renders
RNA editing essential as it allows the synthesis of functional organellar proteins crucial
for plant and seed development [26]. Thus, impairing mitochondrial function through
a deficient RNA editing induces the synthesis of abnormal proteins that, in turn, may
induce male-sterility. Interestingly, the exact relationship between the candidate CMS gene
and the observed phenotype has been assessed rarely, while the mechanisms of action of
the restorer-of-fertility loci remain poorly understood. Comparing directly the mtDNAs,
although difficult in such highly rearranged genomes, could help in identifying the gene(s)
responsible for the CMS condition [15].

5. Cytoplasmic Male Sterility in the Family Apiaceae

In the family Apiaceae, the Iranian accession ‘P1229526′ is the first male sterile line
in celery and was reported by Quiros et al. in 1986 [27]. In two successive publications,
Gao et al. first attributed CMS to a ms-1 single recessive gene in 2006 [28]. However, in
2009 they concluded that in fact two recessive genes controlled nuclear male sterility [29].
Recently in the Chinese celery “tanzhixiangqin”, comparative analysis of the mitochondrial
genome between the CMS line and its maintainer line opened the door to identifying
21 unique regions with 15 ORFs in the CMS line. Only one chimeric gene was found
in ORF768a that had a 1497 bp sequence of the cox1 gene and an unknown sequence of
810 bp. Probably, ORF768a coded for the 11 transmembrane domain of protein, which
led Cheng et al. [30] to indicate in 2021 that ORF768a might be a good candidate gene
for cytoplasmic male sterility in celery. In carrots, a petaloid CMS line was associated
with a novel ORF of 651 bp (orfB-CMS) and an additional 170 bp unknown sequence.
This orfB-CMS chimeric gene has a functional role in atp8-like membrane protein [4,31].
Unfortunately, the number of stable male sterile lines available in species of the family
Apiaceae remains limited [27,28], and none is presently used for commercial seed mass
production. However, the need for growth uniformity is testified by the increasing number
of hybrid cultivars available in the market despite the lack of an efficient CMS system.

6. Protoplast Technology in the Family Apiaceae

Compared to sexual reproduction, somatic hybridization has many advantages to
transfer or generate the CMS condition de novo, in particular because it avoids un-
wanted/uncontrolled traits coming from the simultaneous transmission of genes other
than those responsible for CMS. However, a number of prerequisites exist for the successful
exploitation of somatic hybridization in this context. They include an efficient and reliable
isolation of large yields of highly viable protoplasts of both partners, and the establishment
of reproducible strategies for the high frequency regeneration of plants from the cultured
protoplasts of at least one of the prospective fusion partners. This must also be coupled
with efficient procedures for obtaining viable heterokaryons after protoplast fusion that,
in turn, will be competent for division and ultimate plant regeneration. The information
available on these various steps for members of the family Apiaceae will be discussed in
the sections below.

7. Protoplast Isolation from Different Tissue Sources in Species of the
Family Apiaceae

In 1880, Hanstein first coined the term protoplast representing the entire cell without
its wall. Thereafter, Klercker (1892) for the first time used mechanical means to obtain
protoplasts from water warrior (Stratiotes aloides) [32]. The pioneering discovery by Prof.
Edward Cocking in 1960 [33] that protoplast isolation could be achieved by enzymatic
methods led to gigantic progress in the engineering of somatic cell genetics by making
easier the entry of foreign genes into cells lacking the cell wall.
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To date, isolation of protoplasts was reported in the family Apiaceae in Daucus carota
(Carrot), Apium graveolens (Celery), Coriandrum sativum (Coriander), Foeniculum vulgare
(Fennel), and Petroselinum Hortense (Parsley) (see Reference Table 1) [34–38]. A wide variety
of tissues and organs have been used for isolation of protoplasts, viz., leaves, petals, peti-
oles, cotyledons, shoot apices, epicotyl, hypocotyls, coleoptiles, stems, embryos, microspore
mother cells, microspore tetrads, pollen grains, tubers, roots, root nodules, fruits, en-
dosperm, aleurone layer, crown-gall tissue, callus and cell suspension cultures [32,35,39,40].
Plants grown in the field, in a greenhouse and aseptically in vitro are the materials routinely
used as source tissue for the isolation of protoplasts. They have their own limitations and
benefits, as the use of source tissues grown in a controlled environment and physiological
state influences both the yield and the viability of isolated protoplasts. Greenhouse-grown
crops are often available but they are dependent on temperature, light and supply of nutri-
ents which are not always controlled enough for optimum growth. Environmentally con-
trolled chambers help in reducing the associated variation of greenhouse and field-grown
plants [39]. Different enzyme mixtures have been used to date along with combinations of
various concentrations for obtaining better yield (see References Tables 1 and 2). In the case
of both carrot [41] and cabbage [42], leaf-derived protoplasts gave yields three times those
of hypocotyl protoplasts. In this respect, most authors preferred to use cell suspensions as
the protoplast source rather than differentiated tissues such as with leaves or hypocotyls of
celery [43]. In non-Apiaceae species like Sowbread cyclamen, embryogenic cell suspensions
gave higher yields compared to somatic embryos [44]. Alstroemeria friable embryogenic
callus was found to be a better source of protoplasts than leaves or compact embryogenic
callus, maybe due to the exposure of a larger surface area to the enzyme solution, resulting
in better digestion [45]. Similarly, for the silk tree, leaves digested with 1.5% cellulase
gave higher protoplast yields compared to hypocotyl-derived callus although these were
digested with a higher (2%) cellulase concentration, and this was coupled with higher
viability (of 87% and 85%, respectively) even if enzyme digestion time was 6 h and 16 h,
respectively [46]. In Brassica oleracea, selection of the tissue source and age of explant was
one of the important steps in protoplast isolation, and 4 to 6 week old leaf explants and
1 week old hypocotyls gave the highest protoplast viability compared to 2 week old tissues
of either source [42].

For a successful isolation of viable protoplasts, pre-treatments applied to the source
tissues before enzyme digestion play a crucial role. These may include both a physical
disruption (i.e., chopping of tissues) and/or coupling with a pre-plasmolysis in a solu-
tion consisting of either sucrose or metabolically inert sugars, among which mannitol
and sorbitol are often preferred [44,47,48]. Interestingly, in carrot, plating efficiency of
hypocotyl protoplasts was twice that of leaf protoplasts, while the routinely used suspen-
sion culture-derived protoplasts exhibited a plating efficiency even lower than that of those
two differentiated tissue sources [41].

Table 1. Protoplast isolation in the family Apiaceae [36,41,49–51].

Plant Genotypes
(Daucus carota = Dc) Tissue Source Enzyme Mixture and Condition Yield and Viability References

Carrot Leaves and Hypocotyls
1% Cellulase Onozuka R10, 0.1% Pectolyase

Y-23, 0.6 M Mannitol, 5 mM CaCl2, 20 mM MES,
14–18 h, 30 rpm, 26 ◦C

Leaves: 3.21 × 106 gfw−1,
74% Viability; Hypocotyls:

0.96 × 106 gfw−1
[41]

Leaves
1% Cellulase Onozuka R10, 0.1% Pectolyase

Y-23, 0.6 M Mannitol, 5 mM CaCl2, 10 mM MES,
14–16 h, Dark, 30 rpm, 26 ◦C

Not reported [49]

Leaves
1% Cellulase Onozuka R10, 0.1% Pectolyase

Y-23, 0.6 M Mannitol, 5 mM CaCl2, 20 mM MES,
12–16 h, Dark, 30 rpm, 26 ◦C

2.8 × 106 gfw−1, 72–93%
Viability [50]

Leaves

2% Cellulase Onozuka R10, 0.1% Pectolyase Y-23
and 1% Macerozyme R-10, 0.6 M Mannitol,

10 mM CaCl2, 10 mM MES, 0.8% Bovine serum
albumin, 15 h, Dark, 30 rpm, 26 ◦C

Not reported [51]

Coriander (Coriandrum
sativum vars.) Embryogenic cell suspension

2% Cellulase Onozuka R10, 1% Pectinase and
0.2% Macerozyme R-10, 0.6 M Mannitol, 5 mM

CaCl2, 14–18 h, Dark, 50 rpm

4.81 × 106 gfw−1, 90–93.8%
Viability [36]



Plants 2023, 12, 1060 8 of 21

Table 2. Examples of protoplast fusion and somatic hybridization with the family Apiaceae [2,34,38,52–79].

Plant Genotypes (Daucus carota = Dc) Tissue Source a Enzyme Mixture and Condition Pre-Treatment b Chemical/Electrofusion Fusion Type References

Dc CS 2% Driselase, 0.4 M Sorbitol (2–3 h) - S [52]

Dc × Hordeum vulgare L CS × L

4% Onozuka P 1500, 1% Driselase, 1% Pectinase, 1% Rhozyme,
0.35 M Sorbitol and 0.35 Mannitol, 6 mM CaCl2.2H2O,
NaH2PO4.H2O, 3 mM MES (Mixed with Equal Volume of CS)
(4 h, 50 rpm, 26 ◦C)

- Chemical HK/S [53]

Hordeum vulgare L., cv. Taplavni tavaszi
× (Dc L., cv. Nantaise Slender) L × CS

4% Onozuka P 1500, 1% Driselase, 1% Pectinase, 1% Rhozyme,
0.35 M Sorbitol and 0.35 Mannitol, 6 mM CaCl2.2H2O,
NaH2PO4.H2O, 3 mM MES (Mixed with Equal Volume of CS)
(5 h, 50 rpm, 25 ◦C)

- Chemical HK/S [54]

(Dc) × D. capillifolus CS × CS

4% Onozuka P 1500, 1% Driselase, 1% Pectinase, 1% Rhozyme,
0.35 M Sorbitol and 0.35 Mannitol, 6 mM CaCl2.2H2O,
NaH2PO4.H2O, 3 mM MES (Mixed with Equal Volume of CS)
(4 h, 50 rpm, 26 ◦C)

- Chemical HK/S [55]

Dc L. (albino) × Aegopodium podagraria CS × L

4% Onozuka P 1500, 1% Driselase, 1% Pectinase, 1% Rhozyme,
0.35 M Sorbitol and 0.35 Mannitol, 6 mM CaCl2.2H2O,
NaH2PO4.H2O, 3 mM MES (Mixed with Equal Volume of CS)
(4 h, 50 rpm, 26 ◦C)

- Chemical HK/S [56]

Dc × Petroselinum Hortense CS × L

4% Onozuka P 1500, 1% Driselase, 1% Pectinase, 1% Rhozyme,
0.35 M Sorbitol and 0.35 Mannitol, 6 mM CaCl2.2H2O,
NaH2PO4.H2O, 3 mM MES (Mixed with Equal Volume of CS)
(16 h, 4 h for Parsley, 50 rpm, 26 ◦C)

X-irradiation of 9kR (Parsley) Chemical HK/A [38]

Dc (C123) × D. capillifolius CS R line × CS Seedling 0.1% Macerozyme R-10, 0.1% Cellulase R-10, 10% Mannitol,
0.1% CaCl2.2H2O (12 to 24 h, 25 ◦C) - Chemical HK/S [57]

Dc L. var. Danvers (Line C81) × (line
C123) CS both

2% Cellulase Onozuka-R10, 1% Macerozyme R10, 1%
Driselase purum, 0.4 M Mannitol, 10 mM CaCl2, 0.5% MES
(4.5 h, 25 ◦C)

- Chemical HK/S [58]

(Dc L. cv. Lunga di Amsterdam) (C1) ×
(Dc A2CA-N) CS both 2% Cellulase Onozuka R-10, 1% Macerozyme, 0.4 M Mannitol

(4 h, 25 ◦C, gentle shaking)
IOA 0.2 mM and incubated at
25 ◦C for 20 min Chemical HK/S [59]

Spinacia oleracea L. (cv. Hybrid 102) × Dc
L. (cv. Western Red) L × R 4% Onozuka Cellulase R-10, 0.1% Pectinase, 0.8 M Mannitol,

7 mM CaCl2 (16–20 h, Dark, 25 ◦C, 25 rpm) - Chemical HK/S [60]

(Dc L. cv. Lunga di Amsterdam) × rice
(Oryza sativa L. cv. Roncarolo)

CS (Carrot R) × Rice
(seedling callus)

1% Cellulase Onozuka RS, 2% Pectinase, 0.4 M Mannitol (5 h,
26 ◦C, gentle shaking) - Chemical HK/S [61]

Dc ECS 2% Driselase, 0.4 M Sorbitol, 2.5 mM EGTA, 1 mM MES (2 h)
Carboxyfluorescein, Scopoletin,
FITC, RITC, RHO 123, RHO B
ethyl ester

Chemical HK/S [62]

Dc ECS 2% Driselase, 0.4 M Sorbitol, 1 mM MES (2 h, 125 rpm, 25 ◦C) - Chemical HK/S [63]
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Table 2. Cont.

Plant Genotypes (Daucus carota = Dc) Tissue Source a Enzyme Mixture and Condition Pre-Treatment b Chemical/Electrofusion Fusion Type References

Dc ECS 2% Driselase, 0.4 M Sorbitol, 2.5 mM EGTA, 1 mM MES (2 h,
125 rpm, 25 ◦C)

fluorescent dyes
(carboxyfluorescein, RHO 123,
and RHO B ethyl ester)

Chemical HK/S [64]

Dc CS 2% Driselase, 0.4 M Sorbitol, 1 mM MES 1 mM DFMA final
concentration (Inhibitor) Chemical HK/S [65]

Dc L. cv. Lunga di Amsterdam
(A2CAr-N × E2A1) CS 2% Cellulase Onozuka R-10, 1% Macerozyme, 0.4 M Mannitol

(4 h, 25 ◦C, gentle shaking) - Chemical HK/S [66]

Dc L. X D. capillifolius Gilli CS (H derived calli) × CS
1% Driselase, 0.5% Cellulase Onozuka RS, 0.01%
PectolyaseY-23, 0.5 M Mannitol, 0.1% MES (4 h, 25 ◦C,
Occasional Shaking)

(15 mM IOA, 10 min at RT) ×
(X-irradiated of 60 Krad) Chemical HK/Cybrids [67]

N. plumbaginifolia Viviani (NX1) × Dc cv.
Danvers (strain, PR) L × R 2% Cellulase Onozuka R10, 0.1% Macerozyme, 10% Mannitol,

0.1% CaCl2.2H2O (14–16 h, 30 rpm) - Chemical HK/S [68]

Dc CS 2% Driselase, 0.4 M Mannitol (5 h) - Electrofusion HK/S [69]

Dc × (Nicotiana tabacum) CS × L

2% Cellulase R-10 or 2% Cellulysin, 1% Pectinase, 0.5%
Pectinase, 0.5% Driselase, 0.5% Rhozyme, 0.35 M Mannitol,
0.35 M Sorbitol, 3 mM MES, 6 mM CaCl2.2H2O, 0.7 mM
NaH2PO4 (Overnight, 25 ◦C, 50 rpm)

53 Gy, 18%; 107 Gy, 2%; 166 Gy,
0.5%. X Non-irradiated Chemical HK/A [70]

Dc 28K CMS line × Dc cv. Kikuyo gosun
(K5)

1% Driselase, 0.5% Cellulase Onozuka RS, 0.01%
PectolyaseY-23, 0.5 M Mannitol, 0.1% MES (4 h, 25 ◦C,
Occasional Shaking)

X-irradiated with a total dosage
of 60 Krad (1 Krad/min) ×
15 mM IOA for 10 min.

Chemical Cybrids [71]

Dc CMS line, 28A1 (brown anther type)
× fertile Dc cultivar ‘K5’ CS × H

1% Driselase, 0.5% Cellulase Onozuka RS, 0.01%
PectolyaseY-23, 0.5 M Mannitol, 0.1% MES (4 h, 25 ◦C,
Occasional Shaking)

X-irradiated at 60 Krad
(1 Krad/min) × 15 mM IOA Chemical HK [72]

D. capillijolius and Dc ssp. Gummijer ×
Dc cv. NS and 35B CS 1% Driselase, 0.5% Cellulase RS, 0.01% Pectolyase Y-23, 0.5 M

Mannitol, 0.1% MES (1–6 h, 25 ◦C, Shaking)

X-irradiated with a total dosage
of 60 Krad (1 Krad/min) ×
15 mM lOA

Chemical Cybrids [2]

Nicotiana tabacum (KR-SR) × Dc L. and
Nicotiana tabacum (KR-SA) × Dc L. L × CS and CS × CS 1.6% Cellulase Onozuka R-10, 0.3% Macerozyme R10, 8%

Mannitol, 0.1% CaCl2.2H2O (3 h, 25 ◦C)
Irradiated with 7 Krad or
10 Krad of X-rays Electrofusion Somatic

hybrid [73]

Dc L. × Oryza sativa L. CS 1.6% Cellulase Onozuka R-10, 0.3% Macerozyme R10, 8%
Mannitol, 0.1% CaCl2.2H2O (3 h, 25 ◦C)

50 Krad X-rays × 10 mM IOA
for 20 min Electrofusion HK/A [74]

Barley (Hordeum vulgare L.) × Dc L. L × CS 1.6% Cellulase Onozuka R-10, 0.3% Macerozyme R10, 8%
Mannitol, 0.1% CaCl2.2H2O (3 h, 25 ◦C) _ Electrofusion HK/A [75]

Daucus carota ssp. sativus (Hoffm.) Arcang.
(Eight fertile cultivars ×MS-1 CMS line) CS young L or H 1% Driselase, 0.5% Cellulase RS, 0.01% Pectolyase Y-23, 0.5 M

Mannitol, 0.1% MES (3 h, 30 ◦C, 50 rpm)

Irradiated with 85 Krad X-ray
× 15 mM IOA for 20 min at
4 ◦C

Electrofusion Cybrids [76]
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Table 2. Cont.

Plant Genotypes (Daucus carota = Dc) Tissue Source a Enzyme Mixture and Condition Pre-Treatment b Chemical/Electrofusion Fusion Type References

Celery (Apium graveolens L.) × CMS Dc
6 mmol.L−1 IOA for 7 min ×
irradiated with UV rays
(20 µmol.m−2.s−1) for 9 min

Chemical HK/A [77]

Dc var. sativus Hoffm. × American ginseng
(P. quinquefolius L.) CS × calli 1.5% Cellulase Onozyka RS, 0.3% Pectolyase Y-23, 0.6 M

Mannitol, 5 mM CaCl2 (4 h, RT, 70 rpm) - Chemical HK/A [78]

Dc ssp. sativus Hoffm. × Amsterdamska
(A) and Koral (K) CS

1% Cellulase Onozuka R-10, 0.1% Pectolyase Y-23, 0.6 M
Mannitol, 5 mM CaCl2, 20 mM MES (14–18 h, Dark, 30 rpm,
26 ◦C)

Electrofusion

Homo-
fusant/
Homo-
fusant

[79]

‘Diamant’ celeriac (acceptor) and
‘Parmex’ carrot, coriander or ‘WL253’
white celery (donors)

CS × L and P 1.5% Cellulase R10, 0.1% Macerozyme (Overnight, Dark,
30 rpm, 22 ◦C)

10 mM IOA for 20 min × UV
(257 µWcm−2) for 6 min Electrofusion Hetero-

fusant [34]

a Tissue sources, CS: Cell Suspension, ECS: Embryogenic Cell Suspension, H: hypocotyl, L: leaf, P: Petiole, R: root; b IOA: iodoacetamide, RHO: Rhodamine, S: Symmetric, A: Asymmetric,
HK: Heterokaryon.
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8. Understanding Cell Wall Regeneration for an Improved Efficiency of Protoplast
Technology in Carrot

The key to an efficient exploitation of protoplast technology for breeding includes a
necessary step of de novo regeneration of the cell wall after protoplast isolation. Knowledge
on this fundamental stage has been the object of several studies for many years, including
in carrot which has, in this respect, sometimes even been considered as a model system.

Thus, in an early work, Shea et al. [80] examined the structure of the cell wall regen-
erated by carrot protoplasts for a better understanding of the mechanisms contributing
to their subsequent viability and division competence in culture. They found that callose,
one of the (1→ 3)β-d-glucan fractions that constitute hemicelluloses whose synthesis is
generally associated with tissue and cell wounding, was not a component of the incipient
wall of carrot protoplasts. Conversely, callose synthesis could be induced by intentional
wounding, while the acid-resistant cellulose was formed more slowly. As a result, the
complete regeneration of the wall required 3 days and the resulting protoplast-derived
cell was unable to cope with turgor before at least 5 days. On the other hand, the pectic
substances synthesized by protoplasts were less anionic than those of parent cells, and
they became more highly charged during wall regeneration. The authors proposed that
de-esterification of the carboxyl groups of pectin uronic-acid units permits the formation of
a gel that envelops the protoplast, and then the rigid cellulose-hemicellulose framework is
formed along with this gel matrix.

Soon after this, Emmerling and Seitz [81] isolated a xyloglucan oligosaccharide isolated
from the walls of suspension-cultured carrot cells and examined its impact on regenerating
carrot protoplasts. This nonasaccharide named XG9 (Glc4Xyl3GalFuc) exhibited anti-auxin
properties, whereby XG9 addition in nanomolar concentration to media containing 2,4-D
influenced both the viability of the isolated protoplasts and the activity of glycan synthases,
with effects similar to those of omitting 2,4-D from the regeneration medium.

Phytosulfokine-α (PSK) is a plant specific disulfated pentapeptide known to be in-
volved in the initial steps of cellular dedifferentiation, proliferation, and re-differentiation,
that exhibits a biological function similar to that of plant hormones when added at nanomo-
lar concentrations [82,83]. Since PSK increased the plant regeneration efficiency through
somatic embryogenesis and this trait is linked to a thinning of the cell walls [84], it was le-
gitimate to assess whether there were any modifications of the cell wall fractions associated
with the onset of the regeneration process. Thus, Godel-Jędrychowska et al. [85] examined
the correlation between the fractions (pectin, arabinogalactan protein and extension epi-
topes) involved in the regeneration of the walls of protoplast-derived cells of carrot and the
presence of PSK in the culture medium. They directed various antibodies against the wall
components and observed a variable response to PSK in terms of protoplast-derived cell de-
velopment of the three Daucus taxa studied, as well as a diversity in chemical composition
of the cell walls between the control and the PSK-treated cultures.

9. Protoplasts and Asymmetric Somatic Hybridization in the Family Apiaceae:
State-of-the-Art

Generally, desired protoplast fusion could be performed either by chemical or electrical
fusion. Due to the charged surface, spontaneous fusion happens very rarely; chemical
fusing agents mainly used in the family Apiaceae are 15% Dextran, 10% DMSO, Glycine,
5% to 56% Polyethylene glycol (PEG M.W.1540, 4000, 6000) that have different formula
weights, along with osmotic stabilizers such as mannitol or sorbitol. Usually, a mixture of a
different combination of compounds such as mannitol, sorbitol, sodium chloride, calcium
chloride, calcium nitrate, glycine, sodium hydroxide and buffers is used (see References in
Table 2).

In 1972, Carlson et al. reported the first successful production of somatic hybrids,
of Nicotiana glauca and N. langsdorffii, showing that organelles transfer is possible and
therefore transfer is not limited to genetic material only [86]. Among other strategies
available, CMS can be experimentally induced through protoplast fusion and somatic
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hybridization, which is a technique additively combining the somatic cells from two
different genotypes, cultivars, species, or genera aimed at regenerating an entirely novel
genotype [87]. In general, a standard somatic hybridization strategy comprises four steps
(Figure 3): (a) isolation of parental protoplasts, (b) their chemical or electrical fusion,
(c) culture of the heterokaryons obtained to regenerate first hybrid callus then plants, and
finally (d) identification and selection of the somatic hybrid lines of interest. Such protoplast
fusions may be symmetric, when the contribution of each parent is equivalent (2n = 2x + 2x),
or asymmetric when one parent contributed the nuclear and the other the cytoplasmic
genetic information (2n = 2x). The latter requires limiting the genetic contribution of one of
the parents, for instance by inactivating the nucleus of the donor parent using radioactivity
or chemicals (Figure 3) giving rise to a cytoplasmic hybrid or cybrid [88].
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Therefore, a cybrid is the type of asymmetric somatic hybrid in which the nuclear
genome comes from a single parent whereas the cytoplasmic genomes are inherited from
both parents. However, with few exceptions, following cell divisions the chloroplast
genome tends to become uniparental while the mitochondrial genome remains recombinant,
with segments of both parental mtDNAs [89–92]. One feature that justifies the appeal of
cybrids for breeding programs is the maintenance of cultivar integrity given that the entire
nuclear genome comes from one parent [93]. Noteworthy, cybrids are often male-sterile, and
allow for the transfer of genomic fragments from wild plants with interesting agronomic
traits to commercial crops. Additionally, protoplast fusion permits to sidestep existing
barriers to sexual hybridization and hence combine sexually incompatible germplasms
between phylogenetically close or distant plants, but also to transfer to a commercial crop
those desirable traits that are encoded by the plastid or mitochondrial genomes of an
uncultivated genotype.

Recently, Gieniec et al. developed a protocol for the real-time detection of somatic
hybrids with stable non-toxic fluorescent protein (FP) tagging of mitochondria during
electrofusion using carrot protoplasts [79]. Thus, either cyan (eCFP), green (sGFP), yellow
(eYFP) or the mCherry variant of red FP (RFP), with a fused mitochondrial targeting
sequence, were introduced to carrot cell lines by Agrobacterium-mediated transformation
and were subsequently used as a source of protoplasts for electrofusion, after selection to



Plants 2023, 12, 1060 13 of 21

confirm stable labelling. First, the authors assessed the effect of various direct current (DC)
parameters on protoplast integrity and on their ability to form heterokaryons. They found
that the protoplast response and hybrid cell formation depended on DC voltage and pulse
time, and varied among protoplast sources. Heterokaryons (GFP + RFP or YFP + RFP)
were identified through their dual-color fluorescence [79]. A similar approach based on
dual-color fluorescence was developed many years ago for somatic hybridization in protein
legumes [94] using two dyes and non GMO material, but this study using FP stable tagging
of mitochondria was the first of its kind in carrot. Three hybrids were produced after the
symmetric fusion between carrot root and celery mesophyll protoplasts [95].

10. The Production of Cybrid CMS Lines via Protoplast Fusion

As indicated above, cybrids are obtained through the fusion between donor proto-
plasts, whose nuclei are irradiated by ionizing or non-ionizing radiation treatment such as
Gamma-rays, X-rays or Ultraviolet (UV) rays, and recipient protoplasts whose cytoplasm
organelles are metabolically inactivated by treatment with chemicals such as iodoacetamide
(IOA) or iodoacetate. Ultimately, this leads to the production of a fusion product with an
intact cell nucleus and a cytoplasm from recipient and donor, respectively.

The fusion events are obtained through chemical (PEG-mediated) and/or electrical
methods to give somatic hybrids or cybrids. A 15 mM IOA treatment was necessary
to achieve 90% true hybrids in the Brassicaceae as although a 7.5 mM IOA treatment
given to inactivate B. oleracea protoplasts was sufficient, when fused with non-treated B.
campestris these yielded only 43% true hybrids. This shows the nurse effect that helps treated
protoplasts to tolerate even the double dose of IOA needed to achieve 90% true hybrids over
a time of 15 min [96]. Bruznican and co-workers increased the exposure time from 20 min
to 25 min to overcome such nursing effects at 10 mM IOA [34]. In 2000, Yamamoto et al.
reported the conversion of a MS-1 CMS line into a fertile line with iodoacetamide treatment
and X-ray irradiation of fertile cultivars, through electrofusion [76].

In 1982, Maliga et al. [97] first reported cytoplast-protoplast fusion, where cytoplasts
were the cells whose nucleus was removed. Before that, two methods had been success-
fully devised to obtain such cytoplasts, i.e., either by application of cytochalasin B [98],
or by ultracentrifugation using a discontinuous percoll/mannitol gradient [99]. These
methods have potential for the transfer of organelle-mediated traits to obtain the desired
cybrids [87] but are yet to be explored in carrot. Another, still unexplored approach in
the family Apiaceae is cytoplast-protoplast fusion and asymmetric fusion, as symmetric
hybridization of such partners also produces cybrids, this being a common phenomenon
in a few species like citrus and tobacco. Thus, in tobacco half of the regenerated plants
produced by interspecific symmetric somatic hybridization were cybrids [87]. This lack
is rather surprising considering that in carrot intergeneric, intraspecific and interspecific
somatic hybridization have been well known for many years [55,59,100,101].

In this context, Wang et al. [95] regenerated three hybrids after a symmetric fusion
between celery mesophyll and carrot root protoplasts, while Tan et al. [77] regenerated
11 petaloid celery CMS plants following the asymmetric fusion between IOA-treated
celery and UV-treated carrot protoplasts. Most recently, CMS hybrids were also recovered
after the fusion between carrot UV-inactivated donor protoplasts and inactivated acceptor
protoplasts of celeriac, while the use of coriander or celery donor protoplasts did not permit
the recovery of CMS cybrids in this study [34].

The cybridization approach combines the cytoplasm of a donor protoplast of one
species with the nucleus of an acceptor protoplast belonging to another species, thus
permitting the generation of novel interspecific nucleo-cytoplasmic genomic configurations.
The obtained cybrid tissues result, therefore, from an asymmetric protoplast fusion and,
on occasions, plants regenerated from them may display CMS due to the incongruent
expression of nuclear and cytoplasmic DNA. This was shown in several species in the
Brassicaceae with the nuclear genome of the donor partner inactivated by UV [96,102,103]
or iodoacetamide (IOA), and rearrangements of the mitochondrial genes [104]. In the
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Solanaceae, too, alloplasmic CMS has been obtained in Nicotiana using X-rays [105,106],
while in tomato this was achieved with IOA-treated protoplasts fused with γ or X-ray
irradiated protoplasts of potato [107]. Here, the authors generated novel CMS types in
tomato after fusing Lycopersicon esculentum IOA-treated protoplasts with Solanum acaule
or S. tuberosum. Fertile plants were only recovered when the donor was S. lycopersicoides,
despite the presence of donor mitochondria fragments in the acceptor protoplasts. This
underlined the importance of the donor genotype for the generation of a novel CMS type.

One example where asymmetric protoplast fusion is used routinely concerns the
genus Citrus, a model for somatic hybridization. Thus, Grosser et al. [108] transferred CMS
from Satsuma mandarin to other seeded cultivars, and Aleza et al. [109] recovered cybrids
with different mitochondrial and chloroplast combinations following symmetric fusions
between two mandarine genotypes (Chios and Clementine) and between Chios mandarine
and Sanguinelli orange.

11. The Requisites for a Successful Somatic Hybridization

For any asymmetric protoplast fusion to succeed, the availability of efficient plant
regeneration methods is a pre-requisite, particularly for the acceptor species. A second
pre-requirement is the reproducibility of a reliable method to inactivate the nuclear DNA
from the donor and the cytoplasmic DNA from the acceptor. The existence of a routinely
working method for protoplast fusion is needed to create interspecies hybrids. Finally,
the cytoplasmic genome characterization of plants regenerated from the fusion events is
essential when asymmetric fusions are employed to integrate chloroplast or mitochondria
into the acceptor, and the hybridity of shoots regenerated from such fusions is assessed
using molecular markers from both the nuclear and cytoplasmic genomes, to identify
those regions in the genome of the hybrids that are polymorphic between the donor and
the acceptor species. Alternatively, plasmotype discrimination can also be undertaken by
high resolution melting analysis based on the presence of SNPs, insertions and deletions
(INDELS) or SSRs [110].

To date, a number of methodologies for the regeneration of plants from protoplasts
have been developed in different species, and there are various techniques with promis-
ing applications in breeding, such as increasing the genetic diversity through somaclonal
variation, the transfer of cytoplasmic or nuclear genes through somatic hybridization,
or the direct introduction of foreign genes through the transformation of isolated proto-
plasts [109,111–114]. In this context, the use of protoplast fusion and somatic hybridization
for the production of novel hybrids should focus on desirable agricultural traits, aiming
at combinations that can only be achieved through protoplast fusion, subsequently using
the somatic hybrids for conventional breeding and broadening the range of crops where
protoplast technology is exploitable [115]. In turn, this context restricts the potential for the
utilization in fusion experiments of protoplasts carrying specific traits that were introduced
following genetic transformation. Indeed, they would be considered GMOs and hence
would be subject to culture regulations for the somatic hybrids ultimately recovered, and
their progenies, in several countries, particularly in the European Union [116,117].

In the 1980s, somatic hybridization was considered as “the” biotechnique with the
potential to remodel crop improvement and agricultural research for years to come. How-
ever, this assumption is yet to become true, which resulted in a shift of research focus to
molecular-based techniques. This failure of a major impact of somatic hybridization on
crop development can be ascribed to many reasons. Among them are the difficulty in the
isolation and culture of protoplasts added to that encountered for plant regeneration from
protoplasts in many crops where it has proved highly genotype-dependent, and also the
fact that somatic hybrid plants exhibit a higher ploidy level or chromosome complement
since they did not result from a crossing and gamete recombination but from a genome-
addition process. Nevertheless, this drawback of using somatic hybridization has not been
paramount with citrus where it is presently applied for breeding of novel genotypes [118].
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12. Miscellaneous Studies with Carrot Protoplasts

In an early study, Chen and Wang [119] succeeded in cryopreserving both cell suspen-
sions and protoplasts of carrot by vitrification. Both were precultured in liquid MS medium
with 0.175 M sucrose for 3 d followed by 0.4 M sorbitol for 1 d, and they were quenched in
liquid nitrogen following loading in 25% PVS2 at room temperature of precultured cells
(for 5 min) and protoplasts (for 3 min) and treatment with 100% PVS2 at 0ºC (for 7.5 min
and 5 min, respectively). As compared to this, only 47% of the untreated control survived
after cryopreservation.

Other studies concerned somaclonal (protoclonal) variation, which is a means to
recover novel genotypes with interesting traits, and has been used in many species for this
purpose. In carrot, Grzebelus et al. [120] subjected freshly isolated protoplasts and 5-day-old
protoplast-derived microcolonies to in vitro selection using culture filtrates from the fungus
responsible for black rot disease (Alternaria radicina). They revealed that the fungal culture
filtrate decreased the viability and plating efficiency of isolated protoplasts and inhibited
cell divisions in the microcolonies at all concentrations tested above 5% (v/v). However,
the authors also observed that these responses were genotype-dependent and a few plants
which were regenerated with 1%, 2% and 3.5% fungal culture filtrate were hence deemed
to be stress tolerant. Noteworthy among such regenerants up to 19% were tetraploids,
while only 5% of tetraploid plants were regenerated from the control protoplasts. However,
RAPD markers did not reveal any large chromosomal rearrangements between the controls
and the regenerants obtained after selection. Some of the plants regenerated from both
control protoplasts and cultures selected with the fungal culture filtrate showed a lower
susceptibility to A. radicina compared to seed-derived plants, but those derived from fungal
culture treatments were less capable of flowering and showed a higher rate of male sterility.

The study above confirmed the potential interest of protoclonal variation, both spon-
taneous and induced, for the generation of genetic novelties of interest in carrot, and
prompted another study by the same team where Kiełkowska et al. [121] undertook ex-
periments on in vitro selection for salt tolerance with carrot protoplast cultures. Thus,
they exposed protoplasts of three carrot accessions to increasing concentrations of NaCl
up to 400 mM and found that NaCl at 50 mM or more reduced plating efficiency while
200 mM NaCl or higher completely arrested cell division. Thereafter, they subjected the
protoplast-derived plants from the control and 50–100 mM NaCl treatments to an 8-week
salt stress in greenhouse conditions induced by salinized soil (electrical conductivity, EC,
of 3 and 6 mS cm−1). They found that the 50 mM NaCl stress in vitro induced polyploidy
among regenerants, but also that the plants from the 50 and 100 mM NaCl-treated proto-
plast cultures had a higher survival rate under salt stress compared to the controls. These
salt-stressed plants also accumulated anthocyanins in the petioles, produced denser hairs
on the leaves and petioles, and exhibited altered pollen viability and seed setting compared
to control plants.

13. The Impact of Artificial Intelligence on Protoplast Technology-Based Approaches
in Future

Some of the drawbacks above can be removed by employing state-of-the-art technolo-
gies such as artificial intelligence (AI), neuronal networks and robotic platforms. In this
respect, the use of computational approaches may have a valuable impact in improving
trial and error in regeneration systems [122]. To optimize and develop regeneration pro-
tocols, AI models can be taken into consideration. Several studies reported the accuracy
and reliability of artificial intelligence methodology to optimize various processes such
as callogenesis, protoplast and cell growth, somatic embryogenesis, androgenesis, shoot
regeneration, rhizogenesis, hairy root cultures, sterilization, temperature inside the culture
containers, plant virus detection, secondary metabolite production, microshoot length,
in vitro physiological disorders, shoot organogenesis, in-vitro rooting and acclimatization
in several crops [123,124]. Shiotani et al. used Multilayer perceptron (MLP) of artificial neu-
ral networks (ANNs) to classify the alive or dead cell status of Arabidopsis thaliana cultured



Plants 2023, 12, 1060 16 of 21

protoplasts using digitalized imaged shape and color of cells [125]. In the family Apiaceae,
MLP was used for the classification of somatic embryos and non-embryogenic structures
of Apium graveolens that can be selected for transfer to the next culture phase [126,127].
Likewise, MLP was also applied for cell growth prediction and optimization in order to
determine the final biomass level of Daucus carota by using initial inoculum and sugar
concentration data [128]. AI models could be applied for the emerging field of genetic
engineering and genome editing, i.e., via clustered regularly interspaced short palindromic
repeats (CRISPR)- CRISPR associated protein 9 (Cas9). Genetic transformation mainly relies
on multiple factors such as nutrients, light, temperature and bacterial optical density but
not the least on the plant genotype [124]. Recently, robotic platforms were used for isolation
of protoplasts, minimizing the time duration compared to agrobacterium mediated or
biolistic methods for early detection of transformed plants [129].

Most recently, protoplasts were used for production of transgene-free carrot follow-
ing PEG-mediated transformation using CRISPR technology, for the centromere-specific
Histone H3 (CENH3) gene [51]. Protoplasts were also used earlier to verify the blockage
of the anthocyanin synthesis in a model purple carrot callus following the knock-out of
F3H gene to demonstrate successful site-directed mutagenesis in carrot with CRISPR/Cas9
and the usefulness of a model callus culture to validate genome editing systems [130]. In
this respect, the new plant breeding technologies (NPBT) approach must be utilized in the
species lacking host susceptibility to transformation mediated by Agrobacterium [44]. Use
of protoplasts for CRISPR/Cas system, artificial intelligence (AI), neuronal networks, and
robotic platforms for isolation, transformation and screening of protoplast isolation are
emerging fields in agriculture [131].

14. Conclusions

The rising population remains challenging due to the increased demand for food,
leading to a simultaneous need for high production and yield, coupled with a good quality
of crops. The family Apiaceae contributes a major share to the human diet and hence shows
a need for higher production. The use of protoplasts for somatic hybridization increased
due to commercially important traits that are governed by mitochondria and plastids. To
maintain the uniformity in quality and yield, CMS lines are one of the good sources for
hybrid seed production. Other traits of agronomic and economic relevance that could
benefit from the availability of somatic hybrids in members of the family Apiaceae are
those associated with nutrition, disease tolerance and even natural color production. For
protoplast fusion, well established isolation, pre-treatment and regeneration from different
tissue sources are the primary needs of today. Protoplast fusion has often remained a
bottleneck for obtaining hybrids due to the unavailability of nuclear irradiation facilities
including Gamma rays and X-rays. As an alternative, the more easily available ultra violet
radiation has been used. In addition, fusion efficiency with chemical and electrical fusion
needs to be improved. To date, a number of studies have reported somatic hybridization in
the family Apiaceae, but the transfer of a trait and its commercialization have remained
challenging. In future, use of evolving technologies such as CRISPR and AI will be helpful
when associated with protoplast technology.
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