Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = UHDTV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2143 KiB  
Article
Optimization of the Generative Multi-Symbol Architecture of the Binary Arithmetic Coder for UHDTV Video Encoders
by Grzegorz Pastuszak
Electronics 2023, 12(22), 4643; https://doi.org/10.3390/electronics12224643 - 14 Nov 2023
Cited by 2 | Viewed by 1253
Abstract
Previous studies have shown that the application of the M-coder in the H.264/AVC and H.265/HEVC video coding standards allows for highly parallel implementations without decreasing maximal frequencies. Although the primary limitation on throughput, originating from the range register update, can be eliminated, other [...] Read more.
Previous studies have shown that the application of the M-coder in the H.264/AVC and H.265/HEVC video coding standards allows for highly parallel implementations without decreasing maximal frequencies. Although the primary limitation on throughput, originating from the range register update, can be eliminated, other limitations are associated with low register processing. Their negative impact is revealed at higher degrees of parallelism, leading to a gradual throughput saturation. This paper presents optimizations introduced to the generative hardware architecture to increase throughputs and hardware efficiencies. Firstly, it can process more than one bypass-mode subseries in one clock cycle. Secondly, aggregated contributions to the codestream are buffered before the low register update. Thirdly, the number of contributions used to update the low register in one clock cycle is decreased to save resources. Fourthly, the maximal one-clock-cycle renormalization shift of the low register is increased from 32 to 64 bit positions. As a result of these optimizations, the binary arithmetic coder, configured for series lengths of 27 and 2 symbols, increases the throughput from 18.37 to 37.42 symbols per clock cycle for high-quality H.265/HEVC compression. The logic consumption increases from 205.6k to 246.1k gates when synthesized on 90 nm TSMC technology. The design can operate at 570 MHz. Full article
(This article belongs to the Special Issue New Technology of Image & Video Processing)
Show Figures

Figure 1

19 pages, 1269 KiB  
Article
A Highly Pipelined and Highly Parallel VLSI Architecture of CABAC Encoder for UHDTV Applications
by Chen Fu, Heming Sun, Zhiqiang Zhang and Jinjia Zhou
Sensors 2023, 23(9), 4293; https://doi.org/10.3390/s23094293 - 26 Apr 2023
Cited by 2 | Viewed by 2553
Abstract
Recently, specifically designed video codecs have been preferred due to the expansion of video data in Internet of Things (IoT) devices. Context Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding module widely used in recent video coding standards such as HEVC/H.265 and [...] Read more.
Recently, specifically designed video codecs have been preferred due to the expansion of video data in Internet of Things (IoT) devices. Context Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding module widely used in recent video coding standards such as HEVC/H.265 and VVC/H.266. CABAC is a well known throughput bottleneck due to its strong data dependencies. Because the required context model of the current bin often depends on the results of the previous bin, the context model cannot be prefetched early enough and then results in pipeline stalls. To solve this problem, we propose a prediction-based context model prefetching strategy, effectively eliminating the clock consumption of the contextual model for accessing data in memory. Moreover, we offer multi-result context model update (MCMU) to reduce the critical path delay of context model updates in multi-bin/clock architecture. Furthermore, we apply pre-range update and pre-renormalize techniques to reduce the multiplex BAE’s route delay due to the incomplete reliance on the encoding process. Moreover, to further speed up the processing, we propose to process four regular and several bypass bins in parallel with a variable bypass bin incorporation (VBBI) technique. Finally, a quad-loop cache is developed to improve the compatibility of data interactions between the entropy encoder and other video encoder modules. As a result, the pipeline architecture based on the context model prefetching strategy can remove up to 45.66% of the coding time due to stalls of the regular bin, and the parallel architecture can also save 29.25% of the coding time due to model update on average under the condition that the Quantization Parameter (QP) is equal to 22. At the same time, the throughput of our proposed parallel architecture can reach 2191 Mbin/s, which is sufficient to meet the requirements of 8 K Ultra High Definition Television (UHDTV). Additionally, the hardware efficiency (Mbins/s per k gates) of the proposed architecture is higher than that of existing advanced pipeline and parallel architectures. Full article
Show Figures

Figure 1

18 pages, 2571 KiB  
Article
3-D Sound Image Reproduction Method Based on Spherical Harmonic Expansion for 22.2 Multichannel Audio
by Kenta Iwai, Hiromu Suzuki and Takanobu Nishiura
Appl. Sci. 2022, 12(4), 1994; https://doi.org/10.3390/app12041994 - 14 Feb 2022
Cited by 1 | Viewed by 2511
Abstract
In this paper, we propose a three-dimensional (3-D) sound image reproduction method based on spherical harmonic (SH) expansion for 22.2 multichannel audio. 22.2 multichannel audio is a 3-D sound field reproduction system that has been developed for ultra-high definition television (UHDTV). This system [...] Read more.
In this paper, we propose a three-dimensional (3-D) sound image reproduction method based on spherical harmonic (SH) expansion for 22.2 multichannel audio. 22.2 multichannel audio is a 3-D sound field reproduction system that has been developed for ultra-high definition television (UHDTV). This system can reproduce 3-D sound images by simultaneously driving 22 loudspeakers and two sub-woofers. To control the 3-D sound image, vector base amplitude panning (VBAP) is conventionally used. VBAP can control the direction of 3-D sound image by weighting the input signal and emitting it from three loudspeakers. However, VBAP cannot control the distance of the 3-D sound image because it calculates the weight by only considering the image’s direction. To solve this problem, we propose a novel 3-D sound image reconstruction method based on SH expansion. The proposed method can control both the direction and distance of the 3-D sound image by controlling the sound directivity on the basis of spherical harmonics (SHs) and mode matching. The directivity of the 3-D sound image is obtained in the SH domain. In addition, the distance of the 3-D sound image is represented by the mode strength. The signal obtained by the proposed method is then emitted from loudspeakers and the 3-D sound image can be reproduced accurately with consideration of not only the direction but also the distance. A number of experimental results show that the proposed method can control both the direction and distance of 3-D sound images. Full article
(This article belongs to the Special Issue Audio and Acoustic Signal Processing)
Show Figures

Figure 1

Back to TopTop