
Citation: Fu, C.; Sun, H.; Zhang, Z.;

Zhou, J. A Highly Pipelined and

Highly Parallel VLSI Architecture of

CABAC Encoder for UHDTV

Applications. Sensors 2023, 23, 4293.

https://doi.org/10.3390/s23094293

Academic Editor: Yun Zhang

Received: 17 March 2023

Revised: 21 April 2023

Accepted: 24 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Highly Pipelined and Highly Parallel VLSI Architecture of
CABAC Encoder for UHDTV Applications
Chen Fu 1 , Heming Sun 2 , Zhiqiang Zhang 1 and Jinjia Zhou 1,*

1 Graduate School of Science and Engineering, Hosei University, Tokyo 184-8584, Japan
2 Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8050, Japan
* Correspondence: zhou@hosei.ac.jp

Abstract: Recently, specifically designed video codecs have been preferred due to the expansion of
video data in Internet of Things (IoT) devices. Context Adaptive Binary Arithmetic Coding (CABAC)
is the entropy coding module widely used in recent video coding standards such as HEVC/H.265
and VVC/H.266. CABAC is a well known throughput bottleneck due to its strong data dependencies.
Because the required context model of the current bin often depends on the results of the previous
bin, the context model cannot be prefetched early enough and then results in pipeline stalls. To
solve this problem, we propose a prediction-based context model prefetching strategy, effectively
eliminating the clock consumption of the contextual model for accessing data in memory. Moreover,
we offer multi-result context model update (MCMU) to reduce the critical path delay of context
model updates in multi-bin/clock architecture. Furthermore, we apply pre-range update and pre-
renormalize techniques to reduce the multiplex BAE’s route delay due to the incomplete reliance
on the encoding process. Moreover, to further speed up the processing, we propose to process four
regular and several bypass bins in parallel with a variable bypass bin incorporation (VBBI) technique.
Finally, a quad-loop cache is developed to improve the compatibility of data interactions between the
entropy encoder and other video encoder modules. As a result, the pipeline architecture based on the
context model prefetching strategy can remove up to 45.66% of the coding time due to stalls of the
regular bin, and the parallel architecture can also save 29.25% of the coding time due to model update
on average under the condition that the Quantization Parameter (QP) is equal to 22. At the same time,
the throughput of our proposed parallel architecture can reach 2191 Mbin/s, which is sufficient to
meet the requirements of 8 K Ultra High Definition Television (UHDTV). Additionally, the hardware
efficiency (Mbins/s per k gates) of the proposed architecture is higher than that of existing advanced
pipeline and parallel architectures.

Keywords: high efficiency video coding (HEVC); entropy coding; context adaptive binary arithmetic
coding (CABAC); video coding; hardware design

1. Introduction

The creation of intelligent sensor nodes that enable intelligent processing for Internet
of Things (IoT) surveillance, remote sensing, and smart city applications is gaining more
and more attention [1]. In this, video data is crucial, and specifically designed video codecs
have been preferred in recent years [2]. With a focus on reducing the data burden and
improving the video quality [3], video coding and processing techniques performed in
low-cost implementations and higher compression efficiency will cope with the design
requirements of sensor nodes. The Joint Collaborative Team on Video Coding (JCT-VC)
published the High Efficiency Video Coding (HEVC) standard in 2013 [4]. With a more
flexible block division structure, a more precise coding mode, and some cutting-edge
coding tools, HEVC is the widely used worldwide video coding standard [5].

The HEVC standard’s coding structure primarily comprises Prediction, Estimation,
Motion compensation, Quantization and Transform, and Entropy coding. The video

Sensors 2023, 23, 4293. https://doi.org/10.3390/s23094293 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6554-1770
https://orcid.org/0000-0001-5583-4895
https://orcid.org/0000-0002-2408-366X
https://orcid.org/0000-0002-5078-0522
https://doi.org/10.3390/s23094293
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094293?type=check_update&version=1


Sensors 2023, 23, 4293 2 of 19

pixel value, which is broken down into two chrominance channels and one brightness
channel, serves as the input for this coding system. The image is chunked into coding
tree units (CTUs), which support a range of sizes [6]. Intra and inter frame prediction
is first carried out to encode this CTU video block [7]. The rate-distortion cost is then
assessed using various prediction modes, block size, and distortion degree, and the block
segmentation method and the prediction mode of this CTU are obtained [8]. To produce
the converted coefficient known as “residual”, the original pixel data must be subtracted
from the predicted data in order to obtain the difference [9]. The difference is then further
transformed and quantized [10], and some high-frequency components are removed. To
create the code stream, the projected data and the residuals will be entropy coded.

Entropy coding is a coding class that performs lossless coding based on the informa-
tion entropy principle. Contrary to the Context-based Adaptive Variable Length Coding
(CAVLC) and CABAC hybrid coding approach employed by the previous generation
video coding standard AVC/H.264 [11], HEVC/H.265 only uses the CABAC entropy
coding method.

A high-performance entropy encoder remains one of the hardware implementations’
constraints for entropy coding in video coding. The amount of data that must be processed
via entropy coding in HEVC is also significantly increased to handle more complex Rate
Distortion Optimization (RDO) operations and Syntax Elements (SEs), which places more
demands on hardware implementation. Parallel processing is challenging to implement
because of the stringent data reliance of the binary arithmetic coding employed in CABAC,
as well as the complexity of the arithmetic coding procedures, which might make it chal-
lenging to increase the primary frequency [12,13]. Ding et al. [14] proposed an optimized
CABAC “Producer–Consumer” architecture through data flow modeling to achieve high
throughput and low resource consumption. Wahiba et al. [15] proposed the processing
of 1 to 5 bypass bins at the same by duplicating the number of bypass encoding engine
(BEE) blocks for improving the throughput to be transmitted or stored. Ramos et al. [16]
presented a novel scheme for multiple bypass bin processing, named multiple bypass bin
scheme (MBBS), and the proposed method application into a baseline binary arithmetic
encoding (BAE) architecture, showing an increasing bin per cycle throughput. Li et al. [17]
considered the bypass mode encoding process in the CABAC and tried to merge bypass
bins, and implemented one clock to encode six bins in bypass encoding mode to improve
throughput. Zhou et al. [18] proposed and implemented in hardware a series of throughput
improvement techniques: pre-normalization, Hybrid Path Coverage, Lookahead rLPS,
bypass bin splitting and State Dual Transition, and by combining all these optimizations,
overall CABAC performance improved by leaps and bounds.

The throughput rates of the SE generation and processing module and the BAE
module are essential because they are two modules that both supply and process data.
Consequently, we must address the latency that the complex data preparation required by
the higher-level modules results in. Wahiba et al. [19] propose a new Register Transfer Level
(RTL) architecture of HEVC CABAC encoder, where all SEs transmitted for 4 × 4 sub-blocks
are studied and implemented. Saggiorato et al. [20] propose a novel efficient multi-core
architectural approach, named Multiple Residual Syntax Element Treatment (MRSET),
to meet the requirements of these recent CABAC designs. Tran et al. [21] and Nagaraju
et al. [22] propose efficient hardware implementations of binarization for CABAC that
focus on low area cost and power consumption while providing enough bins for high-
throughput CABAC.

There is a problem that they need to address specifically, even though the current work
considerably increases the throughput of CABAC encoders. When encoding successive
bins of the same context model in BAE, the pipeline or parallel architecture of CABAC
periodically stall, decreasing the coding efficiency. This paper aims to improve the perfor-
mance further and enhance the compatibility of the entropy coding module, which is used
to ensure the overall video coding architecture and the continuous and stable operation
of this entropy coding encoder. This study builds on our earlier work by offering several



Sensors 2023, 23, 4293 3 of 19

fresh architectural modifications to enhance the critical path delay and the number of bins
provided every clock cycle, dramatically increasing the overall throughput. Below is a
summary of this paper’s significant contributions.

1. We examine the challenges and bottlenecks in pipelined or parallel implementa-
tions brought on by arithmetic coding’s back-and-forth dependency on coding states.
We propose to use pre-range update and pre-renormalize technique to reduce the
multiplex BAE route delay due to the incomplete reliance of the encoding process.

2. We propose the variable bypass bin incorporation (VBBI) technique, which allows an
extra two bypass coding bins to be processed in the same clock cycle in a quad parallel
architecture, significantly improving the throughput of BAE in a parallel architecture.

3. When the context model cannot be prefetched early enough, the pipeline will stall
since the context model needed for the current bin typically depends on the outcome
of the previous bin. We provide a prediction-based context model prefetching strategy
to address this issue. Additionally, the Multi-result Context Model Update (MCMU)
architecture is proposed, the critical path for state transitions is shortened by the
context model update of the meticulously optimized parallel architecture.

4. Based on the HEVC video coding standard, a highly compatible hardware architec-
ture for entropy encoding is provided. The whole entropy encoding architecture is
pipelined, and the data interaction between binarization and BAE is cached using
parallel-in-parallel-out (PIPO) to improve the stability of the entropy encoder. It also
develops a quad-loop cache architecture to improve compatibility for data interaction
between the entropy encoder and other video encoder modules.

2. Analysis of CABAC
2.1. CABAC’s Process

As depicted in Figure 1, CABAC comprises three key modules: binarization, context
modeling, and binary arithmetic coding [23]. The video prediction data, reference data,
etc., are parsed into the appropriate SEs in the entropy coding process. These SEs include
prediction patterns, block segmentation flag, etc. After binarization, the values of the
non-binarized SEs are mapped into a series of a variable number of binary symbols [22].
Each binary symbol is referred to as a bin. The critical information of the video sequence
is represented by the syntax elements, which aim to represent the video with the least
amount of data possible while allowing for the reconstruction of the video sequence at the
decoding stage.

Binarization

Context
modeling

bypass bins
Syntax

elements

regular
bins

bitstreamBinary 
arithmetic 
encoding

Bypass bin
arithmetic
encoder

Regular
arithmetic
encoder

Figure 1. Key components of CABAC.

The binary symbol bin is the data that can be processed directly by the arithmetic
coding module. Arithmetic coding is primarily split into Regular Coding and Bypass
Coding, with various SEs accessing distinct selection criteria for each. Among them, the
context modeling part will supply the context probability model of the associated bin based
on the context data from the SEs for the regular coding bin.

The HEVC standard defines several binarization methods for entropy coding: Fix-
Length (FL) coding, Truncated Rice (TR) coding, K-order exponential Golomb coding,
etc. The above binarization methods are the most critical for syntax elements in HEVC,
except for very few syntax elements with their own specific binarization methods. This



Sensors 2023, 23, 4293 4 of 19

is mainly influenced by the numerical characteristics of different SE values and is related
to the context model selection methods corresponding to other SEs. In addition, although
the binarization method of SEs is specified directly by the standard, the quantization
parameters cMax and RiceParam often depend on the specific encoding situation. For
example, the cMax parameter of the merge_idx index is determined by the number of
merge mode candidates.

The probability of encoded blocks and encoded SEs is reflected in the context model
in entropy coding. The core of context modeling is to estimate the distribution probability
of the currently encoded SEs and enhance coding efficiency by using video data’s spatial
and temporal correlation. The accuracy of context modeling, which holds a key place in the
entropy coding standard, significantly affects the coding effect. For the standard coding
model, the coding procedure for each bin includes the corresponding context model. To
adaptively make adjustments to diverse videos, these context model need to be updated in
real time.

Although the arithmetic coding specified by the HEVC standard is conceptually com-
parable to the joint finite-precision binary arithmetic coding, numerous modifications have
been made to the implementation techniques to reduce the complexity of the operations.
The More Probable Symbol (MPS) and Less Probable Symbol (LPS) definitions of the encod-
ing’s binary symbols denote the symbols having a big and small probability of occurrence,
respectively. The binary arithmetic encoding inputs are the bin to be encoded and its accom-
panying contextual model. Figure 2 depicts the encoding procedure, primarily separated
into the MPS and LPS bin types. Although the two flow lines are different, they include
stages like renormalization, calculating rLPS and updating the context.

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

range=rLPS
low=low+rMPS

state==0

state=LUTLPS(state)

MPS=1-MPS

state=LUTMPS(state)

LPS MPS

No

Yes

range=rMPS

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

low[9:8]==0

range[8]==0

low[9:8]==1

bitsOutstanding++

range=range<<1
low=low<<1

low[9:8]=0

putbit(0)

putbit(1)

No

end

Yes

Yes

No

No

Yes

Renormalization

Figure 2. Flowchart of BAE. The gray section can be pre-executed before the blue section.

2.2. Bottleneck Analysis

The pipeline architecture is one successful approach to increasing the throughput of
BAE hardware, and the multi-channel parallel architecture is another. BAE in HEVC suffers



Sensors 2023, 23, 4293 5 of 19

from a huge area of memory due to lots of context models [24,25], so Static Randomaccess
Memory (SRAM) is used instead of registers. However, a particular case in the implemen-
tation causes the pipeline architecture to stall. As shown in Figure 3, when the current bin
coding is complete, the context model of the same bin must be restored for the next bin at
the next clock cycle. Updating the context model requires one clock, and reading or writing
the context model from RAM also consumes one clock, so subsequent bins cannot read the
updated context model from the adjacent clock from the context model RAM that has not
yet been written. Therefore, it is necessary to suggest a CABAC hardware design that can
implement a parallel or pipelined CABAC without stalling.

Context
modeling

Regular 
coding engine

Bypass
coding engine

bin, context model

previous bin for context model update
BAE

Bitstream

bin

Figure 3. Each time a bin is encoded in the regular coding engine, the context model must be changed
and saved back into the Context Modeling.

For multiplexed parallel context model update architectures, the resulting path delay
corresponds to many levels of multiplexers, which will dominate the critical path of
CABAC. Thus, bottlenecks have emerged in determining how to improve the efficiency
of the pipeline/parallel structure, and use less hardware to achieve better throughput
CABAC designs.

For a variety of data, other video encoder modules communicate with the entropy
encoding. Numerous data will be combined in the entropy coding. The entropy coding
may occasionally fail to finish digesting the input data in a timely manner, resulting in the
loss of the input data since its coding efficiency differs from that of the other modules of
the encoder. The residual coefficient data are the largest class of data among the coded data
required for entropy coding. It also becomes challenging to balance the data supply of the
reconstruction module with the value of the entropy coding and how to store these data
more effectively.

3. Proposed CABAC Prediction-Based Context Model Prefetching Strategy
3.1. Prediction-Based Context Model Prefetching

One of the features of CABAC is that each time a regular encoding is performed,
the probabilistic model of the current encoded bin needs to be updated. The context
modeling needs to transmit the same throughput to support the BAE with multiple bins
constructed above.

However, pipeline or parallel implementation is complex when faced with some
exceptional cases. When there are successive bins with the same context model, since
one clock is required to update the context model and both reading and writing of RAM
data also occupy one clock, the latter bin cannot be read from the context model memory
CM_RAM in the adjacent clock cycle that has not yet been written to the updated context
model. To cope with the phenomenon of pipeline stall, this paper proposes a context model
prefetching strategy and optimizes it for the multi-bin case, aiming to achieve a stall-free
pipeline and low resource and high master frequency.



Sensors 2023, 23, 4293 6 of 19

The context modeling architecture of the pipeline BAE in this paper is shown in
Figure 4a. Because only one bin is processed per cycle, the design of this paper uses Parallel
In Serial Out (PISO) as the input module for context model update. The PISO module
outputs data for one bin at each clock cycle. At the same time, the context model needs
to be obtained from CM_RAM by index. Prefetching will save the relevant data and
predict the next incoming bin to be the same context model as the current bin. Finally, the
predicted bin values and other data are transferred to the next stage. Since RAM reading
and writing consume one clock cycle, if consecutive bins utilize the same context model,
the post-context model cannot access the data written after the pre-update of the adjacent
clock cycle.

bin==MPS

PISO

CM_RAM

state

CM_idx

State
Transition
Table

CM_update

Prefetching

stage 0

stage 1

Same_flag

CM_idx

ff

(a)

ST ST ST ST

SDT SDT

Context memory

（b）

Prefetching

State
Transition

Table

CM Synchronization Module

State
Transition

Table

State
Transition

Table

 State 
Dual-Transition

 State 
Dual-Transition

State
Transition

Table

1 2 3S 45 6 3D

Context memory

（c）

Figure 4. Proposed SDT-based context updating architecture. ST and SDT are 128-1 and 256-1 LUTs,
respectively. (a) Proposed architecture for updating single-way pipeline context model based on
prefetching. (b) Architecture proposed by [18] with additional state dual-transition (SDT) LUTs.
(c) Proposed MCMU architecture. The values from 1 to 6 denote the possible outputs.

When the index of the current clock cycle input to CM_RAM is the same as the
previous clock cycle, the context model is directly communicated to stage 1 of the pipeline
through the Same_flag, and the context model is directly passed through the internal
pipeline. The CM update module receives the updated model in the previous clock cycle
instead of using CM RAM. Thus, regardless of whether the context model of the next bin is
the same as the current consistent one, the correct data can be output promptly. The context



Sensors 2023, 23, 4293 7 of 19

model that needs to be updated is found in the state transition table and then saved in
CM_RAM for real-time updates. This is a prefetching strategy proposed in this paper to
solve this case, implemented by caching the model’s index.

As depicted in Figure 4b, ref. [18] designed an architecture for context model update
in parallel architecture. However, the critical path must be further optimized to prevent the
critical path delay from exceeding BAE. To address this issue, we propose the Multi-result
Context Model Update (MCMU) architecture in this paper.

Ref. [18] had to make the probabilistic state update satisfy all bin cases; many multi-
plexers are placed between state transition (ST) and state dual-transition (SDT), which is
considered to be simplified in this paper, and the new architecture is shown in Figure 4c.
The architecture utilized in this work features one clock cycle for encoding up to four bins,
where the type of bin specified in Table 1 denotes the interrelationship of the context models
of these four bins. When the bin type is the same, as indicated by the same context model,
it yields a total of only seven cases. For instance, if the bin type is ABBD, this means that
the middle two bins utilize the same context model. The proposed architecture provides
six results per clock cycle. Among them, result 3 contains two cases that must be arbitrated
by prefetching. Therefore, this architecture can obtain all the results of the context model
update by only one multiplexer, at the cost of dropping the encoding of the last bin if all
the four bins are of the same context model, i.e., only three bins are encoded in parallel in
this clock cycle.

Table 1. All cases with the context model dependencies for the four-way parallel bin.

Bin type A B C D
Forms used ST ST ST ST

The result of use 1 2 3S 4

Bin type A A C D
Forms used ST SDT1 ST ST

The result of use 1 5 3S 4

Bin type A A A D
Forms used ST SDT1 SDT2 + ST ST

The result of use 1 5 3D 4

Bin type A A A A
Forms used ST SDT1 SDT2 + ST QT

The result of use 1 5 3D NG

Bin type A B B D
Forms used ST ST SDT2 ST

The result of use 1 2 6 4

Bin type A B B B
Forms used ST ST SDT1 SDT2 + ST

The result of use 1 2 5 3D

Bin type A B C C
Forms used ST ST ST SDT2

The result of use 1 2 3 6

Suppose there are bins with the same context model in the next clock cycle. In that
case, the context model needs to transfer to the BAE module first through the cache in time
to avoid the untimely transmission of the context model due to the read and write time of
the memory.



Sensors 2023, 23, 4293 8 of 19

3.2. Proposed Pre-Range Update and Pre-Renormalize BAE Architecture

The context model update, computation of range, calculation of low, and the renormal-
ization procedure are all carried out in a cascading manner, as is already noted, making the
entire coding process feasible for pipelining activities.

A valuable fact for designing a single-way arithmetic coding pipeline is that the low of
the current coding interval depends on range unidirectionally. In contrast, range does not
depend on low. Therefore, in the design of the arithmetic coding pipeline, range and low
can be calculated separately, and range is calculated first before low to shorten the critical
path of the pipeline.

According to Figure 2, the range computation includes rLPS lookup, interval recursion,
renormalization lookup and shift; range update depends on rLPS, and rLPS depends on
the current range and context model state. Therefore, compared with the low update
and bitstream output part, the computation of range is the most complex part of the
pipeline, and the loop algorithm generated by renormalization becomes a bottleneck for
the hardware architecture.

However, one renormalization can only double the encoding interval of less than 256,
so it is often necessary to perform multiple renormalizations due to the small range, which
makes it difficult to pipeline and affects the encoding efficiency. Since only the shifting
of range and low and the counting of bitOutstanding are performed in the renormalization
process, multiple renormalizations can be completed in one operation. The times of
renormalizations differ when the bin is MPS and LPS. When the bin is MPS, if range is less
than 256, then renormalization is performed once; otherwise, renormalization is skipped.
Renormalization is required when the bin is LPS, as illustrated in Table 2; renorm count is
retrieved from the renormTab table. The lookup table uses the higher five bits of the rLPS
as an index for the times of renormalizations.

Table 2. Renormalization times table.

rLPS [7:3] 0 1 2–3 4–7 8–15 16–31

Renormalization times 6 5 4 3 2 1

Therefore, this paper proposes pre-range update and pre-renormalize, as shown in the
purple area of Figure 5. In the first stage, in addition to completing the pre-computation
rLPS, the pre-lookup table and storage structure of the renormalization count renorm_count
are added. The range update is split into two levels of pipeline. Renorm_count is obtained
from rLPS by indexing the table. The renormTab table size is 1 × 32, so in the context
of the first stage pipeline to obtain four candidate rLPSs, we can also look up the table
to obtain the renormalization number renorm_count which corresponds to the candidate
rLPS, and shift to obtain the corresponding renormalization interval rLPS_renorm with
four candidate values. So the renormalization count lookup table of rLPS can also be split
into sub-operations carried out in the first stage pipeline. In contrast, the shift operation in
renormalization is completely placed in the first stage pipeline.

The four candidate renormalization values obtained after pre-renormalize will also be
used as indexes by range [7:6] at the beginning of the second stage pipeline to determine
the final rLPS renormalization interval. For the renormalization of MPS, the above pre-
normalization method cannot be used because it depends entirely on the coding interval
range of the previous encoding. In the second stage of the pipeline, the highest bit of rMPS
is used as the judgment condition to determine whether to perform rMPS renormalization.
The final range is selected between rLPS_renorm and rMPS_renorm according to whether
the bin is MPS or not.



Sensors 2023, 23, 4293 9 of 19

Renorm TabRenorm Tab

ff6b

PreRlpsTab

Pre-rLPSList

ff8bx4 ff8bx4

LUT1 LUT3

<<1

ff1b

ri-1

ri-1[7:6]

rLPS-
rMPS

rMPS[8]

bin==MPS

ri

rLPS_renorm

stage1

stage2

x4

ff3bx4

LUT2

0 1

0

ff9b ff3b
0

ff1b

bin

ff1b

bypass_flag

ff9b ff1b

lowi-1
<<

<<1

lowi

stage3

state

Pre-rLPSTab renorm Tab
x4

Pre-
LPSrenormTab

Figure 5. Diagram of pipelined single-bin BAE architecture. The purple part is the proposed
pre-renormalize technique. The red part is the single-way hardware architecture which is bypass
bin compatible.

3.3. Area-Efficient BAE Pipeline Architecture with Compatibility

In the entropy coding of HEVC, the bins of regular and bypass coding are sequentially
arranged. If hardware is designed separately for both, it can achieve very high coding
speed under certain circumstances, especially for bypass bins. The bypass bin splitting
(BPBS) described by [18], which increases the throughput of 1 clock cycle, has several
implementation limitations. Still, at the cost of memory, resources to store intermediate
results and additional bin sequences merge to integrate. For up to five pathways of [18]
alone, 32 combinations of bin cases are included. It is also required to allocate all the results
in one clock cycle before the update of low can be performed. If more multiple bypass
bins are attempted, more cases need to be processed, which will be an extremely complex
process that will consume a large hardware area and may become a new critical path. So
this paper proposes area-efficient BAE pipeline architecture with compatibility.

The coding state is calculated differently for different coding modes, as shown in
Table 3. The bypass flag of the current bin is stored in the second stage of the pipeline to
select the encoding state computed in different encoding modes. The bypass encoding
range remains unchanged, with only low changes. Our work integrates the bypass and
regular encoding in one hardware architecture. The update of range is currently the critical
path, so combining the update of bypass coding low into the pipeline does not cause the
frequency to decrease.

Table 3. Low update with different coding methods.

Coding Method Input Low Update

Regular MPS low � renorm_count
Regular LPS (low + rMPS) � renorm_count
Bypass 1 low � 1 + range
Bypass 0 low � 1

The third stage of the pipeline architecture designed in this paper is the update
calculation of low. The number of renormalizations when the bin is LPS is obtained via
renormTab and LUT2 jointly checking the table. If the bin is MPS and rMPS is greater than
or equal to 256, the renormalization is skipped, and if the bin is MPS but rMPS is less than



Sensors 2023, 23, 4293 10 of 19

256, the renormalization is carried out once. The bypass coding only updates low, and its
coding process is shown in the red part in Figure 5. Compared to the design presented in
the previous work, the current architecture can accomplish stable and continuous coding
with a lower circuit area without extending the critical path.

3.4. Multi-Bin Parallel Architecture Based on Variable Bypass Bin Incorporation

A pipeline or parallel architecture are two efficient ways to increase the throughput
rate of arithmetic coding technology. However, the dependency on the arithmetic encoding
states makes the issue of long-timing routes in the pipeline structure even worse. This
work presents a pipeline architecture for the arithmetic encoder and a multi-path parallel
architecture with a single pipelined arithmetic encoder on each lane.

In the four-way parallel structure shown in Figure 6, the context model updates are
precomputed upfront. The range and low computed by the first encoder are used as the
state input for the second channel, and so on for multiple channels of state updates. In
particular, the encoding state of the last encoder will be saved in a register as the starting
state data for the next set of four-way bin encoding.

ff

Pre_rLPS_LUT
Pre_renorm_LUT

range 
updating

low 
updating

range 
updating

low 
updating

range 
updating

range 
updatingff

ff

stage1

stage2

stage3

stage4

Bits out

Pre_rLPS_LUT
Pre_renorm_LUT

Pre_rLPS_LUT
Pre_renorm_LUT

Pre_rLPS_LUT
Pre_renorm_LUT

Bins & Context

ff ff ff

ff ff ff ff

ff ff ff ff

ff ff ff ff

low 
updating

low 
updating

Figure 6. Pipelined multibin BAE architecture.

In the first stage of the pipeline, in addition to the pre-rLPScalculation and pre-
renormalize, a pre-lookup table and storage structure for the renormalization count are
added. The renormalization count candidates are stored in registers and will determine
the final value in the second-stage pipeline, which will participate in the renormalization
calculation of low. In a basic four-bin BAE, either a regular or a bypass bin must be encoded
sequentially. As we can see through the previous section, the update phase of range in a
single-path pipeline architecture becomes the critical path, while the update of low is more
straightforward.

So this paper proposes the Variable Bypass Bin Incorporation (VBBI) architecture, as
shown in Figure 7. By taking advantage of the feature that the bypass bin does not change
the context model and range, each time four bins are encoded, if immediately followed by
one or two bypass bins, these two bins are added to the current bin sequence to achieve
the maximum throughput rate of six bins encoded in at most one clock cycle. Even if the



Sensors 2023, 23, 4293 11 of 19

update of low increases to six bins at the same time, the critical path does not exceed the
update process of the range of four bins, so there is no impairment in the main frequency
performance, and the throughput of the parallel architecture can be effectively increased.
Compared with the bypass bin separation architecture used in [18], every single path in
this paper can be adapted to bypass coded bins, which not only saves the RAM used to
store intermediate variables but also removes the hardware area generated by using bin
sequence merge, and the average throughput rate can be achieved very close.

Low Update Low Update Low Update Low Updateff

stage3

stage4
ff ff ff ff

BU

ff

BU

ff

range range range range

bypass
bin

bypass
bin

Figure 7. Variable Bypass Bin Integration (VBBI) architecture. It can encode up to 6 bins in 1 clock,
including at least two bypass bins.

4. Overall System
4.1. Quad-Loop Cache Input

Entropy coding of HEVC is a module that performs statistically based lossless data
compression of the results generated by other modules, so it is related to each module in
video coding. The coding framework of the entropy coding module is shown in Figure 8.
When the entropy coding module obtains all the SEs and residual coefficients, it needs
to pre-process the syntax elements and residual coefficients at each level, which includes
calculating the values of syntax elements to be coded, the context model index, and the
coding method. After the SEs are generated, they will enter the binarization core and input
the binarized bin into the PIPO memory. Then the prefetching module will input three to
six bins per clock cycle into the BAE, which the bit generator will finally integrate into the
bitstream output.

SE 
generation

Binarizer
core

Context modeling

Bit
Generator

PIPO-Bin

Low
update

Binary Arithmetic Encoder (BAE)

Main Controller

bitsteam

RAMs

SE_type

SE_value

slice_type
QP CM

context_value

Bypass bins

cm_idx

ctu_addr_x ctu_addr_y SE_type bin_idx

data

addr

bin

bin_type

Pre-
fetching

rLPStab & 
Range update

Context memory

CM
update

CTU Data
Reference Data

Figure 8. Overall framework of a highly compatible VLSI architecture for H.265/HEVC CABAC
encoder for UHD TV applications.

The data in the entire CTU generated in the video encoding process are passed to the
entropy coding module; these data are diverse and need to be considered for hardware
architecture to match the timing of transmission. However, the data processing speed
of other modules and this module’s throughput will differ. Under the condition that the
whole video coding is pipelined architecture, the data input structure, as shown in Figure 9,



Sensors 2023, 23, 4293 12 of 19

is used to enhance the compatibility of entropy coding. The quad-loop cache architecture is
different from the First-Input-First-Output (FIFO) memory in that it completes the FIFO
function for each group of RAMs, and the data in the RAM block can be read out in disorder,
which is suitable for the data reading requirement of the entropy coding module. If Drw is
4, Write Pointer (WP) is one turn ahead of Read Pointer (RP) and points to the same RAM
as RP. If the pipeline continues to run, it will lead to data loss and coding errors. Therefore,
when Drw is equal to 4, the rest of the video encoding process needs to be paused to ensure
that the coding is absolutely correct.

SE 
generation

Depth_RAM Intra_PU_RAM

Neighbor_RAMResidues_RAM

RAMs_1

Inter_PU_RAM

data

addr

CTU Data
Reference Data

Main Controller

ctu_addr_x
ctu_addr_y

first_ctu_flag
last_ctu_flag

slice_type

RP

WP

Drw

RAMs_2

RAMs_3RAMs_4

RAMs

ctu_addr_x
ctu_addr_y

Figure 9. Quad-loop cache architecture.

The input data include Depth_RAM (containing information on CU depth, TU depth,
and PU mode), Intra_PU_RAM (luminance and chrominance direction), Inter_PU_RAM
(information related to merge and amvp), Neighbor_RAM (information related to the top
side and left side CTU), Residues_RAM (residual data), etc. The data to be entropy coded
are cyclically cached through four RAMs. Each group of RAMs keeps all the data of one
CTU, effectively reducing the dependency between video coding modules.

4.2. Binarization Architecture

The binarization schemes used for most of the SEs in HEVC are Truncated Unary (TU),
Truncated Rice (TR), Kth-order ExpGolomb (EGK), and Fixed-Length (FL) codes. The rest
of the SEs use their corresponding custom binarization schemes, which will include some
compound encoding [26].

Since the binarization is carried out separately for each SE and is not the bottleneck
of the whole architecture, as long as the average throughput of the part is higher than the
average throughput of the BAE, in any case, the entire architecture can be satisfied with
smooth and efficient operation.

The architecture of the single-core binarization module is shown in Figure 10. The
input is SE encoding type value, which is encoded according to the respective encoding
rules. The output of the completed encoding are the bin value, the context model index,
and the encoding type [27].

This design uses a parallel three-stage binarization scheme to meet the goal of smooth
and efficient binarization, as shown in Figure 11. The first stage is responsible for inputting
and sorting the syntax element values SE_Value and encoding types SE_Type that need
to be binarized in order and then transferring them to the following encoding stage [28].
The second stage is responsible for binary encoding. It consists of two single-core binary
modules, one combined module, and one custom module. Each single-core binary module
supports four binary schemes, and the four modules are independent of each other. The
third stage is to type each data after binarization into a packet containing the current bin
value, the coding type, and the contextual model index. These data are then integrated into



Sensors 2023, 23, 4293 13 of 19

the PIPO module and passed into the arithmetic encoding and the context model module
as required to achieve a pipeline architecture for the entire entropy encoding module [22].

EGK TU FL TR

SE_Value SE_Value SE_ValueSE_Value
K

SE_Type SE_Type SE_Type SE_Type

cMax cMax cMax R

5 bits

4 bits 4 bits 4 bits

SE_Type
bin cm_idx bac_type

64 bits 8 bits 3 bits

4 bits

Binarizer Core
5 bits

16 bits

Figure 10. Proposed single-core binarization architecture.

Core 2 Combined

SE_Type

cm_idx&bin

SE value & parameter

bins & length

Analyzer

PIPO-Bin

SE_Value

Core 1 Custom N

bac_type

Figure 11. Proposed parallel binarization architecture. It can implement binarization of multiple
syntax elements in 1 clock.

5. Implementation Results

Experiments are conducted to evaluate the performance of the proposed architecture,
and the superiority of the proposed CABAC encoder is tested via the HEVC reference
software HM-16.7. The proposed CABAC encoder is implemented in Verilog HDL. RTL
simulation is performed on 18 sequences in 5 classes. Tests cover All Intra (AI), Low
Delay (LD), Low Delay P, and Random Access (RA) configurations and include settings for
Quantization Parameters (QPs) 22 and 37.

The CABAC pipeline 1 bin/clock architecture designed in this paper avoids the
pipeline stall problem. Table 4 presents the encoding time that can be saved when encoding
a video sequence since the approach in this paper avoids the stall of the pipeline architecture
caused by successive identical context models. Under general test settings in the AI
configuration, the suggested CABAC architecture can save up to 45.66% of the coding time
by employing the prediction-based context model prefetching method. Even in the LD,
LD_P, and RA settings, the encoding time can have significant reductions. When the QP
is low, the encoding time can be reduced by 27.5% on average, and even when the QP is
37, the pipeline architecture stalls can be optimized by 20.95% on average. This is because
the context model prefetching architecture proposed in this paper can be adapted to the
pipeline architecture to avoid the time consumption caused by the context model update in
memory. The time savings differ since low QP values for high-resolution video increase
the SEs associated with coding residuals. These SEs provide many bins with the same
contextual model for standard coding.



Sensors 2023, 23, 4293 14 of 19

Table 4. Percentage of encoding time (%) saved by the CABAC pipeline architecture improving the
proposed prediction-based contextual model prefetching strategy under common test conditions.

All Intra (AI) Low Delay (LD) Random Access (RA) Average

Class Sequence qp = 22 qp = 37 qp = 22 qp = 37 qp = 22 qp = 37 qp = 22 qp = 37

A PeopleOnStreet 35.50 25.56 30.78 18.47 29.03 18.96 31.28 20.28
Traffic 30.80 29.76 22.73 20.63 23.66 23.02 24.75 23.30

B

ParkScene 34.86 32.70 25.68 21.23 26.58 23.27 28.01 24.29
Kimono1 45.66 37.45 38.03 28.25 38.29 28.82 39.71 30.39

BasketballDrive 34.54 25.84 33.05 23.94 34.05 23.94 33.08 23.42
BQ Terrace 38.38 27.96 32.63 23.29 32.99 24.49 33.97 24.33

Cactus 31.47 27.70 30.34 21.82 28.14 22.74 29.64 23.38

C

BasketballDrill 22.01 21.19 23.54 17.90 22.03 18.07 22.57 18.70
BQ Mall 25.16 25.30 23.19 18.24 23.19 19.66 23.55 20.31

PartyScene 23.30 22.29 21.43 18.40 22.10 18.18 21.95 19.13
Race Horses 35.38 27.48 29.24 17.95 28.35 19.81 30.56 20.81

D

BasketballPass 26.16 22.20 22.27 17.75 22.00 18.04 23.10 18.92
Blowing Bubbles 22.80 22.98 19.44 16.71 21.30 18.23 20.68 18.67

BQSquare 27.08 21.58 18.44 11.96 17.85 15.33 20.36 15.16
Race Horses 32.46 21.59 21.94 16.72 22.92 17.04 24.81 18.02

E
Kristen And Sara 29.38 24.30 29.93 14.84 28.88 18.63 29.48 18.07

FourPeople 27.39 26.22 26.85 16.39 26.73 20.78 26.81 19.91
Johnny 33.03 26.30 30.08 17.08 30.57 20.05 30.76 20.08

Average 30.85 26.02 26.64 18.98 26.59 20.50 27.50 20.95

This paper’s architecture follows the anticipated strategy, allowing it to avoid pipeline
standstill brought on by context model updates and allocate the number of codes per group
of bins through the prefetching module in the parallel architecture, which significantly
increases coding efficiency. Our proposed CABAC encoder is implemented in Verilog. RTL
simulations are performed using the bin sequences in Table 4 across five different resolution
classes, and the QPs are 22 and 37. Table 5 shows the effect of LCMU in the simulation.
With the LCMU, the number of delivered bins per clock cycle (BPCC) is slightly reduced to
below 4, but the maximum clock frequency is substantially increased. Further using VBBI,
the final BPCC is between 4.10 and 4.39 (depending on the configuration). Table 6 shows
the probability that the parallel architecture stalls due to untimely model reads caused by
the next set of bins having the same contextual model as the previous set, the coding time
that can be optimized via the prefetching architecture proposed in this paper.

For the full pipelined architecture CABAC, the gate count is 39.52 K, the maximum
operating frequency is 714 MHz, and the maximum throughput is 714 Mbin/s. For the
CABAC with the highly compatible parallel architecture in this paper, the overall CABAC
throughput, at 513 MHZ, is 2191 Mbin/s. Numerous predictive lookup tables and alterna-
tive algorithms are required to raise the frequency and the number of parallel bins, and
these efforts have led to higher throughput. Therefore, the throughput rate is also the
highest due to the optimization of the hardware design and more advanced processes in
this work.



Sensors 2023, 23, 4293 15 of 19

Table 5. Percentage of coding time (%) saved via the prediction-based context model prefetching
strategy proposed by the CABAC parallel architecture improvement.

Sequence Config. qp = 22 qp = 27 qp = 32 qp = 37

BasketballDrive LD 30.39 25.51 22.27 18.52
RA 30.04 24.46 21.30 18.07

Traffic LD 22.09 22.36 20.96 18.83
RA 22.31 23.04 22.27 20.63

PeopleOnStreet LD 27.84 22.56 18.69 15.86
RA 25.54 21.19 18.08 15.80

BQTerrace LD 33.45 27.03 25.49 22.31
RA 32.80 26.34 23.83 22.89

Kimono LD 34.55 32.20 29.62 26.33
RA 33.52 31.12 28.46 25.61

Average 24.60 * 29.25 25.58 23.10 20.48
* Overall average.

Table 6. Performance in number of delivered BPCC for H.265/HEVC.

Sequence Config. LCMU LCMU + VBBI

BasketballDrive

LD qp = 22 3.90 4.23
LD qp = 37 3.96 4.28
RA qp = 22 3.90 4.26
RA qp = 37 3.96 4.33

Traffic

LD qp = 22 3.93 4.22
LD qp = 37 3.96 4.25
RA qp = 22 3.93 4.29
RA qp = 37 3.94 4.29

PeopleOnStreet

LD qp = 22 3.90 4.32
LD qp = 37 3.97 4.37
RA qp = 22 3.91 4.38
RA qp = 37 3.97 4.42

BQTerrace

LD qp = 22 3.86 4.10
LD qp = 37 3.93 4.23
RA qp = 22 3.87 4.15
RA qp = 37 3.93 4.27

Kimono

LD qp = 22 3.86 4.26
LD qp = 37 3.91 4.21
RA qp = 22 3.87 4.34
RA qp = 37 3.91 4.28

Average 3.92 4.27

Table 7 summarizes the design specifications of our CABAC encoder, compared with
the state of the art. Many authors have reported on the CABAC architecture in the past,
with their focus on different ASIC technologies. The pipeline architectures of [10–12] have
similar configurations. Nonetheless, this paper achieves higher throughput rates and
smaller circuit areas by targeting critical path optimization for the renormalization part of
the range update, context model accesses using RAM only, binarization using a single core
and more advanced ASIC processes. Ref. [16] parallel architecture designs use the bypass
bin splitting technique and merge bypass bins, respectively, to increase the throughput
rate. Although their bins per clock cycle are slightly higher than this paper, they pay a high
price, such as adding bins splitting/merging modules and PIPOs for storing data such
as ranges, etc. The proposed architecture in this research enhances the frequency using
the pre-renormalize technique and MCMU, while increasing the throughput by utilizing
VBBI, ultimately resulting in improved hardware efficiency, as illustrated in Figure 12.
Specifically, the hardware efficiency (Mbins/s per k gates) achieved in this paper is higher
than that of other architectures, including both pipeline and parallel architectures; this



Sensors 2023, 23, 4293 16 of 19

work achieves 20.16 Mbins/s per k gates. Additionally, the context model prefetching
strategy employed in this paper effectively eliminates the time delay that arises due to
model updates in memory, effectively mitigating the BAE stagnation problem.

Table 7. Specification and comparison with prior arts.

Design Kim [12] Peng [13] Ding [14] Zhou [18] Zhang [29] This Work

Process/nm IDEC 180 TSMC 130 Kintex-7 TSMC 90 TSMC 90 TSMC 65
gate count/K 45.089 48.94 - 110.9 54.5 39.52 108.7
Max.clock frequency/MHZ 158 357 120 420 720 714 513
bins/clock 1 1.18 3.59 3.29 (4.37) * - 1 4.27
Max·throughput/Mbin·s−1 158 261–439 431 1382 (1836 ) * 850 714 2191

Mbin·s−1/gate count 3.5 5.33–8.97 - 12.48 (16.56 ) * 15.6 18.07 20.16
* The actual results, the ones in parentheses are the occasional optimal results.

Figure 12. The proposed optimizations improved the hardware efficiency of CABAC when compared
to existing papers [12,13,18,29].

6. Summary

The occurrence of consecutive bins in the same context model can cause stalls in
the hardware pipeline architecture. To overcome this problem, we propose a prediction-
based context model prefetching strategy to alleviate data dependencies by predicting
the next bin model, and reduce critical path delays through the MCMU. In addition, we
use pre-range update and pre-renormalize technique to reduce the multiplex BAE’s route
delay due to the incomplete reliance of the encoding process. Then, we propose the VBBI
technique to improve the throughput of BAE in a parallel architecture. Moreover, the data
interaction between CABAC modules is optimized. In accordance with the experiments, our
architecture eliminates pipeline stalls and saves encoding time, and works better for high
resolution and low QP values, which is in line with the need for more high-definition videos
as time progresses. Moreover, the throughput is enhanced and the hardware efficiency
of the pipeline architecture is maximized. In future study, we will focus on making this
work compatible with the multi-channel parallel architecture and Versatile Video Coding
(VVC/H.266) hardware design [30].

Author Contributions: Conceptualization, methodology, software, writing—review and editing,
C.F.; data curation, experiments, H.S.; investigation, experiments, data curation, writing—review
and editing, Z.Z.; supervision, J.Z. All authors have read and agreed to the published version of
the manuscript.



Sensors 2023, 23, 4293 17 of 19

Funding: This work was supported by JSPS Bilateral Programs Joint Research Projects Grant Number
JPJSBP120 223210, and this work was supported through the activities of VDEC, The University of
Tokyo, in collaboration with NIHON SYNOPSYS G.K, and Japan Society for the Promotion of Science
(JSPS), under Grant 21K17770.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
CABAC Context Adaptive Binary Arithmetic Coding
HEVC High Efficiency Video Coding
MCMU Multi-Result Context Model Update
VBBI Variable Bypass Bin Incorporation
QP Quantization Parameter
UHDTV Ultra High Definition Television
JCT-VC The Joint Collaborative Team on Video Coding
CTUs Coding Tree Units
CAVLC Context-based Adaptive Variable Length Coding
RDO Rate Distortion 0ptimization
AVC Advanced Video Coding
SEs Syntax Elements
BEE Bypass Encoding Engines
MBBS Multiple Bypass Bins Scheme
BAE Binary Arithmetic Encoding
RTL Register Transfer Level
MRSET Multiple Residual Syntax Element Treatment
PIPO Parallel-In-Parallel-Out
FL Fix Length
TU Truncated Unary
TR Truncated Rice
MPS More Probable Symbol
LPS Less Probable Symbol
SRAM Static Randomaccess Memory
SDT State Dual-Transition
PISO Parallel In Serial Out
ST State Transition
BPBS Bypass Bin Splitting
FIFO First-Input-First-Output
WP Write Pointer
RP Read Pointer
AI All Intra
LD Low Delay
RA Random Access
BPCC Bins Per Clock Cycle
VVC Versatile Video Coding

References
1. Bhering, F.; Passos, D.; Ochi, L.S.; Obraczka, K.; Albuquerque, C. Wireless multipath video transmission: When IoT video

applications meet networking—A survey. Multimed. Syst. 2022, 28, 831–850. [CrossRef]
2. Jiang, X.; Yu, F.R.; Song, T.; Ma, Z.; Song, Y.; Zhu, D. Blockchain-enabled cross-domain object detection for autonomous driving:

A model sharing approach. IEEE Internet Things J. 2020, 7, 3681–3692. [CrossRef]
3. Cisco, V. Cisco visual networking index: Forecast and trends, 2017–2022. White Pap. 2018, 1, 1–30.

http://doi.org/10.1007/s00530-021-00885-4
http://dx.doi.org/10.1109/JIOT.2020.2967788


Sensors 2023, 23, 4293 18 of 19

4. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

5. Flynn, D.; Marpe, D.; Naccari, M.; Nguyen, T.; Rosewarne, C.; Sharman, K.; Sole, J.; Xu, J. Overview of the range extensions for
the HEVC standard: Tools, profiles, and performance. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 4–19. [CrossRef]

6. Zhang, J.; Kwong, S.; Zhao, T.; Pan, Z. CTU-level complexity control for high efficiency video coding. IEEE Trans. Multimed. 2017,
20, 29–44. [CrossRef]

7. Adireddy, R.; Palanisamy, N.K. Effective approach to reduce complexity for HEVC intra prediction in inter frames. In Proceedings
of the 2014 Twentieth National Conference on Communications (NCC), Kanpur, India, 28 February 2014–2 March 2014; pp. 1–5.

8. Huang, B.; Chen, Z.; Su, K.; Chen, J.; Ling, N. Low-Complexity Rate-Distortion Optimization for HEVC Encoders. IEEE Trans.
Broadcast. 2021, 67, 721–735. [CrossRef]

9. Choi, J.A.; Ho, Y.S. Improved residual data coding for high efficiency video coding lossless extension. In Proceedings of the the
2013 RIVF International Conference on Computing & Communication Technologies-Research, Innovation, and Vision for Future
(RIVF), Hanoi, Vietnam, 10–13 November 2013; pp. 18–21.

10. Wang, M.; Bi, Q.; Zhu, Y. Video compression: A jointly optimized transform-quantization method. In Proceedings of the 2017
IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 22–25 October
2017; pp. 1–5.

11. Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H. 264/AVC video coding standard. IEEE Trans. Circuits
Syst. Video Technol. 2003, 13, 560–576. [CrossRef]

12. Kim, D.; Moon, J.; Lee, S. Hardware implementation of HEVC CABAC encoder. In Proceedings of the 2015 International SoC
Design Conference (ISOCC), Gyeongju, Republic of Korea, 2–5 November 2015; pp. 183–184.

13. Peng, B.; Ding, D.; Zhu, X.; Yu, L. A hardware CABAC encoder for HEVC. In Proceedings of the 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 1372–1375.

14. Ding, D.; Liu, F.; Qi, H.; Yao, Z. An FPGA-friendly CABAC-encoding architecture with dataflow modeling programming. Imaging
Sci. J. 2018, 66, 346–354. [CrossRef]

15. Wahiba, M.; Abdellah, S.; Aichouche, B.; Azzaz, M. Multiple Bypass Bins FPGA Implementation of H. 256 CABAC Encoder. In
Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018;
pp. 1–5.

16. Ramos, F.L.L.; Zatt, B.; Porto, M.S.; Bampi, S. Novel multiple bypass bin scheme and low-power approach for HEVC CABAC
binary arithmetic encoder. J. Integr. Circuits Syst. 2018, 13, 1–11. [CrossRef]

17. Li, W.; Yin, X.; Zeng, X.; Yu, X.; Wang, W.; Fan, Y. A VLSI Implement of CABAC Encoder for H. 265/HEVC. In Proceedings
of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31
October–3 November 2018; pp. 1–3.

18. Zhou, D.; Zhou, J.; Fei, W.; Goto, S. Ultra-high-throughput VLSI architecture of H. 265/HEVC CABAC encoder for UHDTV
applications. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 497–507. [CrossRef]

19. Wahiba, M.; Abdellah, S.; Azzaz, M.S.; Aichouche, B. Design and FPGA Implementation of Residual Data in HEVC CABAC
Encoder. In Proceedings of the 2018 International Conference on Signal, Image, Vision and their Applications (SIVA), Guelma,
Algeria, 26–27 November 2018; pp. 1–5.

20. Saggiorato, A.V.P.; Ramos, F.L.L.; Zatt, B.; Porto, M.; Bampi, S. HEVC residual syntax elements generation architecture for
high-throughput CABAC design. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 193–196.

21. Tran, D.L.; Tran, X.T.; Bui, D.H.; Pham, C.K. An Efficient Hardware Implementation of Residual Data Binarization in HEVC
CABAC Encoder. Electronics 2020, 9, 684. [CrossRef]

22. Nagaraju, M.; Gupta, S.K.; Bhadauria, V. High-throughput, area-efficient hardware architecture of CABAC-Binarization for UHD
applications. Microelectron. J. 2022, 123, 105425. [CrossRef]

23. Vivienne, S.; Madhukar, B.; Gary, J. High Efficiency Video Coding (HEVC): Algorithms and Architectures; Springer Publishing
Company, Incorporated: Berlin/Heidelberg, Germany, 2014.

24. Fei, W.; Zhou, D.; Goto, S. A 1 gbin/s cabac encoder for H. 264/AVC. In Proceedings of the 2011 19th European Signal Processing
Conference, Low-Power HEVC Binarizer Architecture for the CABAC Block Targeting UHD Video Processing, Barcelona, Spain,
29 August–2 September 2011; pp. 1524–12528.

25. Chen, Y.J.; Tsai, C.H.; Chen, L.G. Architecture design of area-efficient SRAM-based multi-symbol arithmetic encoder in H.
264/AVC. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, 21–24 May
2006; pp. 2621–2624.

26. De Matos Alonso, C.; Ramos, F.L.L.; Zatt, B.; Porto, M.; Bampi, S. Low-power HEVC Binarizer architecture for the CABAC block
targeting UHD video processing. In Proceedings of the 30th Symposium on Integrated Circuits and Systems Design: Chip on the
Sands, Ceara, Brazil, 28 August–1 September 2017; pp. 30–35.

27. Lainema, J.; Ugur, K.; Hallapuro, A. Single Entropy Coder for HEVC with a High Throughput Binarization Mode; JCTVC-G569; JCTVC:
Geneva, Switzerland, 2011; pp. 1–9.

28. Ramos, F.L.L.; Saggiorato, A.V.P.; Zatt, B.; Porto, M.; Bampi, S. Residual syntax elements analysis and design targeting high-
throughput HEVC CABAC. IEEE Trans. Circuits Syst. Regul. Pap. 2019, 67, 475–488. [CrossRef]

http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/TCSVT.2015.2478707
http://dx.doi.org/10.1109/TMM.2017.2723238
http://dx.doi.org/10.1109/TBC.2021.3077771
http://dx.doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1080/13682199.2018.1477486
http://dx.doi.org/10.29292/jics.v13i3.3
http://dx.doi.org/10.1109/TCSVT.2014.2337572
http://dx.doi.org/10.3390/electronics9040684
http://dx.doi.org/10.1016/j.mejo.2022.105425
http://dx.doi.org/10.1109/TCSI.2019.2932891


Sensors 2023, 23, 4293 19 of 19

29. Zhang, Y.; Lu, C. Efficient algorithm adaptations and fully parallel hardware architecture of H. 265/HEVC intra encoder. IEEE
Trans. Circuits Syst. Video Technol. 2018, 29, 3415–3429. [CrossRef]

30. Bross, B.; Wang, Y.K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.R. Overview of the versatile video coding (VVC) standard and
its applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSVT.2018.2878399
http://dx.doi.org/10.1109/TCSVT.2021.3101953

	Introduction
	Analysis of CABAC
	CABAC's Process
	Bottleneck Analysis

	Proposed CABAC Prediction-Based Context Model Prefetching Strategy
	Prediction-Based Context Model Prefetching
	Proposed Pre-Range Update and Pre-Renormalize BAE Architecture
	Area-Efficient BAE Pipeline Architecture with Compatibility
	Multi-Bin Parallel Architecture Based on Variable Bypass Bin Incorporation

	Overall System
	Quad-Loop Cache Input
	 Binarization Architecture

	Implementation Results
	Summary
	References

