Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Tibetan antelope protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 15273 KiB  
Review
Habitat Distributions and Abundance of Four Wild Herbivores on the Qinghai–Tibetan Plateau: A Review
by Tian Qiao, Chiwei Xiao, Zhiming Feng and Junzhi Ye
Land 2025, 14(1), 23; https://doi.org/10.3390/land14010023 - 26 Dec 2024
Viewed by 1140
Abstract
Understanding the change in the habitat distributions and abundance of wildlife in space and time is critical for the conservation of biodiversity and mitigate human–wildlife conflicts (HWCs). Tibetan antelope or chiru (Pantholops hodgsonii), Tibetan gazelle or goa (Procapra picticaudata), [...] Read more.
Understanding the change in the habitat distributions and abundance of wildlife in space and time is critical for the conservation of biodiversity and mitigate human–wildlife conflicts (HWCs). Tibetan antelope or chiru (Pantholops hodgsonii), Tibetan gazelle or goa (Procapra picticaudata), Tibetan wild ass or kiang (Equus kiang), and Wild yak (Bos mutus) have been sympatric on the Qinghai–Tibetan plateau (QTP) for numerous generations. However, reviews on the habitat distributions and abundance of these four wild herbivores (WHs), as well as the methods examining the changes in these aspects, are still lacking. Here, we firstly review the distributions and abundance of four major WHs on the QTP across different periods, examining the underlying causes of changes and HWCs. Furthermore, we critically compare three aspects of methods: transect surveys, machine learning (ML), and deep learning (DL) methods of studying WHs. The results show that since the 1990s, the distributions and abundance of WHs have exhibited a trend of initial decline followed by recovery, largely attributed to global climate warming and a decrease in illegal hunting. However, in recent years, the primary challenge has shifted from wildlife protection to balancing the human and wildlife interests within the constraints of limited resources. In the future, we should focus on enhancing the ecological functions of habitats to achieve harmonious coexistence between humans and nature, as well as establishing a scientific compensation mechanism to mitigate human–wildlife conflicts. In order to accurately calculate the changes, we should select appropriate models to analyze the habitats of wildlife based on their specific characteristics and the environmental conditions. Additionally, with the advancement of large models, AI (artificial intelligence) should be utilized for precise and rapid wildlife conservation. The findings of this study also provide guidance and reference for addressing the issues related to wildlife habitats and abundance in other regions globally. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

14 pages, 6430 KiB  
Article
Seasonal Variation of Gut Microbial Composition and Metabolism in Tibetan antelopes in Hoh Xil National Nature Reserve
by Hang Zhao, Feng Jiang, Haifeng Gu, Hongmei Gao, Jingjie Zhang, Meng Zhang and Tongzuo Zhang
Animals 2023, 13(22), 3569; https://doi.org/10.3390/ani13223569 - 18 Nov 2023
Cited by 3 | Viewed by 1830
Abstract
The Tibetan antelope is an endangered species suffering from poaching and habitat fragmentation. The intestinal flora and metabolites play a crucial role in the physiological homeostasis of hosts, which are influenced by various environmental factors like seasonal variation. In this particular research, our [...] Read more.
The Tibetan antelope is an endangered species suffering from poaching and habitat fragmentation. The intestinal flora and metabolites play a crucial role in the physiological homeostasis of hosts, which are influenced by various environmental factors like seasonal variation. In this particular research, our main goal was to explore the alterations in the metabolism and gut microbiota of Tibetan antelopes between the cold season (XB) and warm season (DA), using untargeted metabolomics and 16S rRNA gene-sequencing analyses. The findings indicated that Tibetan antelopes had a higher alpha-diversity of intestinal microbes during the cold season than during the warm season. Principal co-ordinate analysis revealed notable seasonal discrepancies in the function and structure of intestinal microbes in Tibetan antelopes. The relative abundance of Firmicutes was significantly increased during the cold season compared to during the warm season. Furthermore, the Tibetan antelope’s primary metabolic functions of the intestinal micro-organisms were significantly higher during the cold season. The untargeted metabolomics analysis results showed a total of 532 metabolites that were significantly different between the cold season and warm season groups. These metabolites were found to be enriched in a total of 62 metabolic pathways. Among the most significant pathways of enrichment were the purine metabolism and pyrimidine metabolism. The levels of related metabolites in those pathways were remarkably higher in the warm season compared to the cold season. The comprehensive analysis of 16S rRNA and the metabolome reveals there is a significant correlation between differential microbiota and differential metabolites. Therefore, the gut microbiota changes caused by seasonal changes influenced the metabolites as well. This research reveals the function of seasonal changes in the intestinal flora and metabolites in the adaptation of Tibetan antelopes to environmental fluctuations and supplies a theoretical basis for instructing the protection management of Tibetan antelopes. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

19 pages, 4145 KiB  
Article
High-Accuracy and Low-Latency Tracker for UAVs Monitoring Tibetan Antelopes
by Wei Luo, Xiaofang Li, Guoqing Zhang, Quanqin Shao, Yongxiang Zhao, Denghua Li, Yunfeng Zhao, Xuqing Li, Zihui Zhao, Yuyan Liu and Xiaoliang Li
Remote Sens. 2023, 15(2), 417; https://doi.org/10.3390/rs15020417 - 10 Jan 2023
Cited by 7 | Viewed by 3166
Abstract
As the habitat areas of Tibetan antelopes usually exhibit poaching and unpredictable risks, combining target recognition and tracking with intelligent Unmanned Aerial Vehicle (UAV) technology is necessary to obtain the real-time location of injured Tibetan antelopes to better protect and rescue them. (1) [...] Read more.
As the habitat areas of Tibetan antelopes usually exhibit poaching and unpredictable risks, combining target recognition and tracking with intelligent Unmanned Aerial Vehicle (UAV) technology is necessary to obtain the real-time location of injured Tibetan antelopes to better protect and rescue them. (1) Background: The most common way to track an object is to detect each frame of it, and it is not necessary to run the object tracker and classifier at the same rate, because the speed for them to change class is slower than objects move. Especially in the edge reasoning scene, UAV real-time monitoring requires to seek a balance between the frame rate, latency, and accuracy. (2) Methods: A backtracking tracker is proposed to recognize Tibetan antelopes which generates motion vectors through stored optical flow, achieving faster target detection. The lightweight You Only Look Once X (YOLOX) is selected as the baseline model to reduce the dependence on hardware configuration and calculation cost while ensuring detection accuracy. Region-of-Interest (ROI)-to-centroid tracking technology is employed to reduce the processing cost of motion interpolation, and the overall processing frame rate is smoothed by pre-calculating the motions of different objects recognized. The On-Line Object Tracking (OLOT) system with adaptive search area selection is adopted to dynamically adjust the frame rate to reduce energy waste. (3) Results: using YOLOX to trace back in the native Darkenet can reduce latency by 3.75 times, and the latency is only 2.82 ms after about 10 frame hops, with the accuracy being higher than YOLOv3. Compared with traditional algorithms, the proposed algorithm can reduce the tracking latency of UAVs by 50%. By running and comparing in the onboard computer, although the proposed tracker is inferior to KCF in FPS, it is significantly higher than other trackers and is obviously superior to KCF in accuracy. (4) Conclusion: A UAV equipped with the proposed tracker effectively reduces reasoning latency in monitoring Tibetan antelopes, achieving high recognition accuracy. Therefore, it is expected to help better protection of Tibetan antelopes. Full article
Show Figures

Figure 1

21 pages, 16829 KiB  
Article
Traditional Usage of Wild Fauna among the Local Inhabitants of Ladakh, Trans-Himalayan Region
by Shiekh Marifatul Haq, Eduardo Soares Calixto, Umer Yaqoob, Riyaz Ahmed, Ahmed Hossam Mahmoud, Rainer W. Bussmann, Osama B. Mohammed, Khalid Ahmad and Arshad Mehmood Abbasi
Animals 2020, 10(12), 2317; https://doi.org/10.3390/ani10122317 - 7 Dec 2020
Cited by 36 | Viewed by 8559
Abstract
Zootherapy is accepted all around the globe not only in ancient cultures but different animal derived medicines are also part of the practice in the modern health care systems. The present study assessed the traditional ethnozoological usage of wild animals by local inhabitants [...] Read more.
Zootherapy is accepted all around the globe not only in ancient cultures but different animal derived medicines are also part of the practice in the modern health care systems. The present study assessed the traditional ethnozoological usage of wild animals by local inhabitants in Ladakh region, India, and the reference data for scientific approaches for protection of faunal diversity in trans-Himalayas. The ethnozoological documentation of the animals in Ladakh was carried out through semistructured and close-ended questionnaire surveys and interviews. Multivariate ecological community analysis was used to elucidate the relationship between ethnozoological usage and animal species. Our results showed three animal usage clusters with 32% similarity. Moreover, the similarity in animal usage between digging tools, trophy, handle of tools, decoration, and matting, showed less than 32% of similarity. The highest priority of local people was for food followed by decoration and medicinal usage. The most frequently used animal parts were meat followed by fur and horn. Medicinal uses of 48% of the reported species, i.e., Alectoris chukar (chukar), Cuon alpinus (Asiatic wild dog), Lepus oiostolus (hares), Marmota himalayana (marmots), Ovis aries vignei (Ladakh urial), Pantholops hodgsonii (Tibetan antelope), Procapra picticaudata (Tibetan gazelle), Pseudois nayaur (blue sheep), Tetraogallus himalayensis (Himalayan snow), Tetraogallus tibetanus (Tibetan snow cock), and Lutra lutra (common otter) were reported for the first time from this region. Our study provides innovative information regarding the ethnozoological knowledge in the Ladakh region and reference data for policymakers, researchers, land managers, common public, and the other stakeholders to develop logical and scientific approaches for sustainable use of faunal diversity in hotspot regions like trans-Himalayas and other similar biodiversity-rich sites. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

Back to TopTop