Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Terebelliformia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8370 KiB  
Review
The Terebelliformia-Recent Developments and Future Directions
by Pat Hutchings, Orlemir Carrerette, João M. M. Nogueira, Stephane Hourdez and Nicolas Lavesque
Diversity 2021, 13(2), 60; https://doi.org/10.3390/d13020060 - 3 Feb 2021
Cited by 13 | Viewed by 6168
Abstract
Terebelliformia comprises a large group of sedentary polychaetes which live from the intertidal to the deep sea. The majority live in tubes and are selective deposit feeders. This study synthesises the current knowledge of this group, including their distribution, in the different biogeographic [...] Read more.
Terebelliformia comprises a large group of sedentary polychaetes which live from the intertidal to the deep sea. The majority live in tubes and are selective deposit feeders. This study synthesises the current knowledge of this group, including their distribution, in the different biogeographic regions. We highlight the new methodologies being used to describe them and the resolution of species complexes occurring in the group. The main aim of this review is to highlight the knowledge gaps and to stimulate research in those directions, which will allow for knowledge of their distribution and abundances to be used by ecologists and managers. Full article
(This article belongs to the Special Issue Systematics and Diversity of Annelids)
Show Figures

Figure 1

28 pages, 15591 KiB  
Article
Spaghetti to a Tree: A Robust Phylogeny for Terebelliformia (Annelida) Based on Transcriptomes, Molecular and Morphological Data
by Josefin Stiller, Ekin Tilic, Vincent Rousset, Fredrik Pleijel and Greg W. Rouse
Biology 2020, 9(4), 73; https://doi.org/10.3390/biology9040073 - 6 Apr 2020
Cited by 52 | Viewed by 9336
Abstract
Terebelliformia—“spaghetti worms” and their allies—are speciose and ubiquitous marine annelids but our understanding of how their morphological and ecological diversity evolved is hampered by an uncertain delineation of lineages and their phylogenetic relationships. Here, we analyzed transcriptomes of 20 terebelliforms and an outgroup [...] Read more.
Terebelliformia—“spaghetti worms” and their allies—are speciose and ubiquitous marine annelids but our understanding of how their morphological and ecological diversity evolved is hampered by an uncertain delineation of lineages and their phylogenetic relationships. Here, we analyzed transcriptomes of 20 terebelliforms and an outgroup to build a robust phylogeny of the main lineages grounded on 12,674 orthologous genes. We then supplemented this backbone phylogeny with a denser sampling of 121 species using five genes and 90 morphological characters to elucidate fine-scale relationships. The monophyly of six major taxa was supported: Pectinariidae, Ampharetinae, Alvinellidae, Trichobranchidae, Terebellidae and Melinninae. The latter, traditionally a subfamily of Ampharetidae, was unexpectedly the sister to Terebellidae, and hence becomes Melinnidae, and Ampharetinae becomes Ampharetidae. We found no support for the recently proposed separation of Telothelepodidae, Polycirridae and Thelepodidae from Terebellidae. Telothelepodidae was nested within Thelepodinae and is accordingly made its junior synonym. Terebellidae contained the subfamily-ranked taxa Terebellinae and Thelepodinae. The placement of the simplified Polycirridae within Terebellinae differed from previous hypotheses, warranting the division of Terebellinae into Lanicini, Procleini, Terebellini and Polycirrini. Ampharetidae (excluding Melinnidae) were well-supported as the sister group to Alvinellidae and we recognize three clades: Ampharetinae, Amaginae and Amphicteinae. Our analysis found several paraphyletic genera and undescribed species. Morphological transformations on the phylogeny supported the hypothesis of an ancestor that possessed both branchiae and chaetae, which is at odds with proposals of a “naked” ancestor. Our study demonstrates how a robust backbone phylogeny can be combined with dense taxon coverage and morphological traits to give insights into the evolutionary history and transformation of traits. Full article
(This article belongs to the Section Zoology)
Show Figures

Graphical abstract

Back to TopTop