Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Taiwan CDC Vaccine Center

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1667 KiB  
Article
Translational Venomics: Third-Generation Antivenomics of Anti-Siamese Russell’s Viper, Daboia siamensis, Antivenom Manufactured in Taiwan CDC’s Vaccine Center
by Libia Sanz, Sarai Quesada-Bernat, Pei Yu Chen, Cheng Dow Lee, Jen Ron Chiang and Juan J. Calvete
Trop. Med. Infect. Dis. 2018, 3(2), 66; https://doi.org/10.3390/tropicalmed3020066 - 15 Jun 2018
Cited by 29 | Viewed by 5826
Abstract
The venom proteome of Siamese Russell’s viper from Taiwan, alongside complementary in vivo lethality neutralization assay and in vitro third-generation antivenomics assessment of the preclinical efficacy of the homologous antivenom manufactured in Taiwan CDC’s Vaccine Center, are here reported. Taiwanese Russell’s viper venom [...] Read more.
The venom proteome of Siamese Russell’s viper from Taiwan, alongside complementary in vivo lethality neutralization assay and in vitro third-generation antivenomics assessment of the preclinical efficacy of the homologous antivenom manufactured in Taiwan CDC’s Vaccine Center, are here reported. Taiwanese Russell’s viper venom proteome comprised 25 distinct gene products, with the heterodimeric PLA2 viperotoxin-F representing the most abundant toxin (47.5% of total venom proteome). Coagulation FV-activating serine proteinase (RVV-V, 14%), the PIV-SVMP activator of FX (RVV-FX, 8.5%), and less abundant toxins from nine protein families, make up its venom proteome. Venom composition-pathology correlations of D. siamensis envenomings in Taiwan are discussed. The lethal effect of Taiwanese D. siamensis venom was 0.47 mg/g mouse. Antivenomics-guided assessment of the toxin recognition landscape of the Taiwanese Russell’s viper antivenom, in conjunction with complementary in vivo neutralization analysis, informed the antivenom’s maximal toxin immunorecognition ability (14 mg total venom proteins/vial), neutralization capacity (6.5 mg venom/vial), and relative content of lethality neutralizing antibodies (46.5% of the toxin-binding F(ab’)2 antibodies). The antivenomics analysis also revealed suboptimal aspects of the CDC-Taiwan antivenom. Strategies to improve them are suggested. Full article
(This article belongs to the Special Issue Snakebite Envenoming: Prioritizing a Neglected Tropical Disease)
Show Figures

Graphical abstract

Back to TopTop