Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Ta2NiS5/CrOCl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3493 KiB  
Communication
Symmetry-Engineering-Induced In-Plane Polarization Enhancement in Ta2NiS5/CrOCl van der Waals Heterostructure
by Yue Su, Peng Chen, Xiangrui Xu, Yufeng Zhang, Weiwei Cai, Gang Peng, Xueao Zhang and Chuyun Deng
Nanomaterials 2023, 13(23), 3050; https://doi.org/10.3390/nano13233050 - 29 Nov 2023
Cited by 1 | Viewed by 1866
Abstract
Van der Waals (vdW) interfaces can be formed via layer stacking regardless of the lattice constant or symmetry of the individual building blocks. Herein, we constructed a vdW interface of layered Ta2NiS5 and CrOCl, which exhibited remarkably enhanced in-plane anisotropy [...] Read more.
Van der Waals (vdW) interfaces can be formed via layer stacking regardless of the lattice constant or symmetry of the individual building blocks. Herein, we constructed a vdW interface of layered Ta2NiS5 and CrOCl, which exhibited remarkably enhanced in-plane anisotropy via polarized Raman spectroscopy and electrical transport measurements. Compared with pristine Ta2NiS5, the anisotropy ratio of the Raman intensities for the B2g, 2Ag, and 3Ag modes increased in the heterostructure. More importantly, the anisotropy ratios of conductivity and mobility in the heterostructure increased by one order of magnitude. Specifically speaking, the conductivity ratio changed from ~2.1 (Ta2NiS5) to ~15 (Ta2NiS5/CrOCl), while the mobility ratio changed from ~2.7 (Ta2NiS5) to ~32 (Ta2NiS5/CrOCl). Such prominent enhancement may be attributed to the symmetry reduction caused by lattice mismatch at the heterostructure interface and the introduction of strain into the Ta2NiS5. Our research provides a new perspective for enhancing artificial anisotropy physics and offers feasible guidance for future functionalized electronic devices. Full article
Show Figures

Figure 1

Back to TopTop