Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = TM joint osteoarthritis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3455 KiB  
Article
Predictions of Muscle Forces During the Cross-Body Adduction and Hand-Behind-the-Back Tests to Assess Osteoarthritis of the Acromioclavicular Joint
by Kamal Gautam, Mohamed Samir Hefzy, Kyle Behrens and Abdul A. Mustapha
Appl. Sci. 2025, 15(2), 967; https://doi.org/10.3390/app15020967 - 20 Jan 2025
Viewed by 1292
Abstract
Acromioclavicular joint osteoarthritis is prevalent in middle-aged and older people, causing shoulder pain and functional limitations. Despite its prevalence, there are inconsistencies in the physical diagnosis procedures practiced in clinical tests. A recent study introduced a novel hand-behind-the-back (HBB) test, a promising alternative [...] Read more.
Acromioclavicular joint osteoarthritis is prevalent in middle-aged and older people, causing shoulder pain and functional limitations. Despite its prevalence, there are inconsistencies in the physical diagnosis procedures practiced in clinical tests. A recent study introduced a novel hand-behind-the-back (HBB) test, a promising alternative to the traditional cross-body adduction (CBA) test. However, further study was suggested to validate the results obtained. So, this study predicted muscle forces for the cross-body adduction and hand-behind-the-back tests using OpenSim and the AnyBody Modeling System™. This work redefined the joint kinematics for the tests and performed an inverse dynamics analysis to solve the muscle redundancy problem using the generic upper extremity dynamic models available in OpenSim and AnyBody Modeling System™. The results revealed some agreements and significant discrepancies in most muscle force predictions between the OpenSim and AnyBody Modeling SystemTM. Thus, this study underscores the necessity of integrating multiple modeling approaches and comprehensive validation, including experimental data, to enhance the accuracy and reliability of muscle force predictions in shoulder biomechanics during CBA and HBB tests. Full article
(This article belongs to the Special Issue Human Biomechanics and EMG Signal Processing)
Show Figures

Figure 1

19 pages, 6533 KiB  
Article
Personalised High Tibial Osteotomy Surgery Is Accurate: An Assessment Using 3D Distance Mapping
by Andrea Varaschin, Harinderjit Singh Gill, Stefano Zaffagnini, Alberto Leardini, Maurizio Ortolani, Fabio Norvillo, Alisdair MacLeod, Giacomo Dal Fabbro, Giorgio Cassiolas, Alberto Grassi and Claudio Belvedere
Appl. Sci. 2024, 14(19), 9033; https://doi.org/10.3390/app14199033 - 6 Oct 2024
Cited by 1 | Viewed by 2584
Abstract
Early-stage knee osteoarthritis is often suitable for treatment with high tibial osteotomy (HTO). This is an effective joint-preserving treatment, resulting in good postoperative outcomes. To overcome the limitations of traditional HTO, the surgical technique and correction accuracy can be enhanced by personalised procedures [...] Read more.
Early-stage knee osteoarthritis is often suitable for treatment with high tibial osteotomy (HTO). This is an effective joint-preserving treatment, resulting in good postoperative outcomes. To overcome the limitations of traditional HTO, the surgical technique and correction accuracy can be enhanced by personalised procedures using three-dimensional digital planning and metal additive manufacturing, The purpose of this clinical trial study was to evaluate the three-dimensional accuracy of a new personalised HTO procedure, using modern imaging techniques, 3D modelling, and distance map analysis (DMA). Twenty-five patients were treated with the personalised HTO procedure. Before surgery and after 6 months, they underwent clinical evaluation scoring, radiographic imaging, and computed-tomography scanning to generate morphological models. Specifically, preoperative tibia models were used to plan the tibia correction and the design and position of the fixation plate. Preoperative, planned, and postoperative models were imported in computer-aided and designing software (Geomagic ControlTM 2014, 3D Systems, Rock Hill, SC, USA) for DMA implementation to assess geometrical differences between model surfaces. A very good reproduction of the planned tibia morphology was achieved postoperatively (average differences between −0.9 mm and 1.4 mm). DMA values associated with fixation-plate deformation were less than 1 mm, similar to those for plate-to-tibia surface-contour matching. Overall, personalised digitally planned HTO utilising three-dimensional printed surgical guides and plates enables accurate planned correction and plate placement. Full article
Show Figures

Figure 1

8 pages, 3585 KiB  
Article
Trapezium Bone Density—A Comparison of Measurements by DXA and CT
by Sebastian Breddam Mosegaard, Kamille Breddam Mosegaard, Nadia Bouteldja, Torben Bæk Hansen and Maiken Stilling
J. Funct. Biomater. 2018, 9(1), 9; https://doi.org/10.3390/jfb9010009 - 18 Jan 2018
Cited by 5 | Viewed by 6987
Abstract
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium [...] Read more.
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43–77). All patients had Eaton–Glickel stage II–IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium. Full article
Show Figures

Graphical abstract

Back to TopTop