Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Starlink satellite launch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 545 KiB  
Article
Space Weather Effects on Satellites
by Rositsa Miteva, Susan W. Samwel and Stela Tkatchova
Astronomy 2023, 2(3), 165-179; https://doi.org/10.3390/astronomy2030012 - 22 Aug 2023
Cited by 12 | Viewed by 9134
Abstract
The study presents a concise overview on the main effects on satellites due to space weather drivers compared to the well-known interplanetary, magnetospheric and ground-based consequences. The solar-activity-driven influences include specific physics-based effects on the spacecraft surface and on-board electronics due to electromagnetic [...] Read more.
The study presents a concise overview on the main effects on satellites due to space weather drivers compared to the well-known interplanetary, magnetospheric and ground-based consequences. The solar-activity-driven influences include specific physics-based effects on the spacecraft surface and on-board electronics due to electromagnetic emission and energetic particles as well as complex effects due to geomagnetic storms which may endanger the mission performance and spacecraft longevity. We select as test examples the Starlink satellites in the period 2019–2022 and present the temporal correspondence between their launches and the space weather phenomena. Based on comparative analysis, we discuss whether the occurrence vs. the intensity of solar and interplanetary drivers of space weather can be considered as a cause for orbital stability problems and satellite loss. The results suggest that a sequence of geomagnetic disturbances together with multiple weak space weather events could lead to severe levels of atmospheric drag ending in a service or satellite loss. Full article
Show Figures

Figure 1

13 pages, 5834 KiB  
Article
Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms
by Tamara Gulyaeva, Manuel Hernández-Pajares and Iwona Stanislawska
Sensors 2023, 23(15), 7005; https://doi.org/10.3390/s23157005 - 7 Aug 2023
Cited by 4 | Viewed by 2927
Abstract
The launch of a series of Starlink internet satellites on 3 February 2022 (S-36), and 7 July 2022 (S-49), coincided with the development of two-phase geomagnetic storms. The first launch S-36 took place in the middle of the moderate two-phase space weather storm, [...] Read more.
The launch of a series of Starlink internet satellites on 3 February 2022 (S-36), and 7 July 2022 (S-49), coincided with the development of two-phase geomagnetic storms. The first launch S-36 took place in the middle of the moderate two-phase space weather storm, which induced significant technological consequences. After liftoff on 3 February at 18:13 UT, all Starlink satellites reached an initial altitude of 350 km in perigee and had to reach an altitude of ~550 km after the maneuver. However, 38 of 49 launched spacecrafts did not reach the planned altitude, left orbit due to increased drag and reentered the atmosphere on 8 February. A geomagnetic storm on 3–4 February 2022 has increased the density of the neutral atmosphere up to 50%, increasing drag of the satellites and dooming most of them. The second launch of S-49 at 13:11 UT on 7 July 2022 was successful at the peak of the two-phase geomagnetic storm. The global ionospheric maps of the total electron content (GIM-TEC) have been used to produce the ionospheric weather GIM-W index maps and Global Electron Content (GEC). We observed a GEC increment from 10 to 24% for the storm peak after the Starlink launch at both storms, accompanying the neutral density increase identified earlier. GIM-TEC maps are available with a lag (delay) of 1–2 days (real-time GIMs have a lag less than 15 min), so the GIMs forecast is required by the time of the launch. Comparisons of different GIMs forecast techniques are provided including the Center for Orbit Determination in Europe (CODE), Beijing (BADG and CASG) and IZMIRAN (JPRG) 1- and 2-day forecasts, and the Universitat Politecnica de Catalunya (UPC-ionSAT) forecast for 6, 12, 18, 24 and 48 h in advance. We present the results of the analysis of evolution of the ionospheric parameters during both events. The poor correspondence between observed and predicted GIM-TEC and GEC confirms an urgent need for the industry–science awareness of now-casting/forecasting/accessibility of GIM-TECs during the space weather events. Full article
(This article belongs to the Special Issue Advances in GNSS Positioning and GNSS Remote Sensing)
Show Figures

Figure 1

13 pages, 1028 KiB  
Article
The Optimal Deployment Strategy of Mega-Constellation Based on Markov Decision Process
by Xuefeng Wang, Shijie Zhang and Hongzhu Zhang
Symmetry 2023, 15(5), 1024; https://doi.org/10.3390/sym15051024 - 5 May 2023
Cited by 2 | Viewed by 2328
Abstract
LEO satellite mega-constellation projects have been proposed by many countries or commercial organizations in recent years. With more than 2000 satellites launched by SpaceX to configure the Starlink system, the orbital resources are more constrained given the existence of spacecrafts and countless orbital [...] Read more.
LEO satellite mega-constellation projects have been proposed by many countries or commercial organizations in recent years. With more than 2000 satellites launched by SpaceX to configure the Starlink system, the orbital resources are more constrained given the existence of spacecrafts and countless orbital debris. Due to this, the operating environment is full of uncertainty and information symmetry is absent for designers and stakeholders during the process of project deployment. The flux model of space debris on orbit has been built for assessing the LEO operation environment. Based on the orbital debris flux model, the collision probability can be calculated, which is an important variable of the state space. Given the condition that tge number of satellites decreases due to collision between satellites and debris, the Markov decision model has been built for optimal deployment strategy and decision-making. In order to assure that the mega-constellation system could provide services when satellites have failed, additional satellites need to be launched. The optimal deployment is the decision to launch a moderate number of satellites to maximize the benefit and minimize the cost. Assuming that at least 30 satellites need to be operated, 4 deployment scenarios are considered and the optimal deployment strategies can be obtained. Full article
Show Figures

Figure 1

16 pages, 3973 KiB  
Article
Dynamic Network Formation for FSO Satellite Communication
by Revital Marbel, Roi Yozevitch, Tal Grinshpoun and Boaz Ben-Moshe
Appl. Sci. 2022, 12(2), 738; https://doi.org/10.3390/app12020738 - 12 Jan 2022
Cited by 9 | Viewed by 3490
Abstract
Satellite network optimization is essential, particularly since the cost of manufacturing, launching and maintaining each satellite is significant. Moreover, classical communication optimization methods, such as Minimal Spanning Tree, cannot be applied directly in dynamic scenarios where the satellite constellation is constantly changing. Motivated [...] Read more.
Satellite network optimization is essential, particularly since the cost of manufacturing, launching and maintaining each satellite is significant. Moreover, classical communication optimization methods, such as Minimal Spanning Tree, cannot be applied directly in dynamic scenarios where the satellite constellation is constantly changing. Motivated by the rapid growth of the Star-Link constellation that, as of Q4 2021, consists of over 1600 operational LEO satellites with thousands more expected in the coming years, this paper focuses on the problem of constructing an optimal inter-satellite (laser) communication network. More formally, given a large set of LEO satellites, each equipped with a fixed number of laser links, we direct each laser module on each satellite such that the underlying laser network will be optimal with respect to a given objective function and communication demand. In this work, we present a novel heuristic to create an optimal dynamic optical network communication using an Ant Colony algorithm. This method takes into account both the time it takes to establish an optical link (acquisition time) and the bounded number of communication links, as each satellite has a fixed amount of optical communication modules installed. Based on a large number of simulations, we conclude that, although the underlying problem of bounded-degree-spanning-tree is NP-hard (even for static cases), the suggested ant-colony heuristic is able to compute cost-efficient solutions in semi-real-time. Full article
Show Figures

Figure 1

17 pages, 9698 KiB  
Article
The Interaction between the LEO Satellite Constellation and the Space Debris Environment
by Shuyi Ren, Xiaohua Yang, Ronglan Wang, Siqing Liu and Xiaojing Sun
Appl. Sci. 2021, 11(20), 9490; https://doi.org/10.3390/app11209490 - 13 Oct 2021
Cited by 25 | Viewed by 4942
Abstract
The wide application of satellite constellations in the field of space-based global communications and remote sensing has led to a substantial increase in small-satellite launch plans, a sharp increase in the density of space objects in low-Earth orbit (LEO), and a reduction in [...] Read more.
The wide application of satellite constellations in the field of space-based global communications and remote sensing has led to a substantial increase in small-satellite launch plans, a sharp increase in the density of space objects in low-Earth orbit (LEO), and a reduction in available orbit and frequency resources. This will further aggravate the trend of deterioration of the space debris environment. Taking the Starlink constellation as an example, this paper describes the influence of the constellation from the environmental debris flux of the satellite, the evaluation of the number of evasion maneuvers, the change of risk level, the success rate of post mission disposal (PMD) and the growth rate of space objects. The simulation results show that the collision risk of the Starlink constellation is related to the orbital parameters, and the higher success rate of post-mission disposal (PMD) can reduce the collision risk of the constellation. The large constellations increases the growth rate of space objects, and even if all the satellites are disposed of after the mission, the impact of constellations on the space environment can not be offset. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Aerospace Applications)
Show Figures

Figure 1

Back to TopTop