Space Weather Effects on Satellites
Abstract
:1. Introduction
2. SW Drivers and Their Effects on Spacecraft Technology
2.1. EM Emission
- Satellite signal degradation and loss;
- Radio blackouts;
- Increased atmospheric drag.
2.2. Magnetized Plasma Structures
2.3. Energetic Particles
- Single-event upsets/single-event effects;
- Cumulative radiation effects (total ionizing dose and displacement damage dose);
- Surface discharges;
- Deep dielectric charging;
- Solar cell degradation, material aging/surface damage to materials.
3. Notable Satellite Failures
3.1. Historical Overview
3.2. The ‘SpaceX’ Storm: 2022-02-03
4. Results
4.1. Space Weather Conditions during Starlink Launches
4.2. A Comparative Analyses on the Starlink Failure Event
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCD | Charge-coupled device |
CIR | Co-rotating interaction region |
CME | Coronal mass ejection |
EM | Electromagnetic |
EUV | Extreme ultraviolet |
GCR | Galactic cosmic rays |
GEO | Geostationary Earth orbit |
GIC | Geomagnetically induced current |
GLE | Ground-level enhancement |
GS | Geomagnetic storm |
ICME | Interplanetary CME |
IMF | Interplanetary magnetic field |
IP | Interplanetary |
LEO | Low Earth orbit |
MEO | Medium Earth orbit |
SEE | Solar energetic electron |
SEP | Solar energetic proton |
SF | Solar flare |
SIR | Stream interaction region |
SSC | Sudden storm commencement |
SW | Space weather |
SXR | Soft X-ray |
UV | Ultraviolet |
VLEO | Very low Earth orbit |
Appendix A. Starlink Launch Information (2019–2022)
Date | Time | Orbit | Number | Dst | Date | Time | Orbit | Number | Dst |
---|---|---|---|---|---|---|---|---|---|
2019-11-09 | 14:56 | 550/53 | 60/43 | 2022-01-06 | 21:49 | 540/53.2 | 49/49 | −4 | |
2020-01-07 | 02:19 | 550/53 | 60/43 | 2022-01-19 | 02:03 | 540/53.2 | 49/49 | ||
2020-01-29 | 14:06 | 550/53 | 60/48 | 2022-02-03 | 18:13 | 540/53.2 | 49/10 | ||
2020-02-17 | 15:05 | 550/53 | 60/48 | 0 | 2022-02-21 | 14:44 | 540/53.2 | 46/46 | |
2020-03-18 | 12:17 | 550/53 | 60/53 | 5 | 2022-02-25 | 17:12 | 540/53.2 | 50/50 | 7 |
2020-04-22 | 19:31 | 550/53 | 60/51 | 2022-03-03 | 14:25 | 540/53.2 | 47/47 | 14 | |
2020-06-04 | 01:25 | 550/53 | 60/54 | 2022-03-09 | 13:45 | 540/53.2 | 48/47 | ||
2020-06-13 | 09:21 | 550/53 | 58/42 | 2022-03-19 | 04:43 | 540/53.2 | 53/47 | ||
2020-08-07 | 05:12 | 550/53 | 57/54 | 2022-04-21 | 17:52 | 540/53.2 | 53/53 | ||
2020-08-18 | 14:31 | 550/53 | 58/53 | 4 | 2022-04-29 | 21:27 | 540/53.2 | 53/52 | |
2020-09-03 | 12:46 | 550/53 | 60/52 | 0 | 2022-05-06 | 09:42 | 540/53.2 | 53/53 | |
2020-10-06 | 11:30 | 550/53 | 60/51 | 2022-05-13 | 22:08 | 540/53.2 | 53/53 | ||
2020-10-18 | 12:26 | 550/53 | 60/47 | 2 | 2022-05-14 | 20:41 | 540/53.2 | 53/53 | 19 |
2020-10-24 | 15:32 | 550/53 | 60/44 | 2022-05-18 | 11:00 | 540/53.2 | 53/53 | ||
2020-11-25 | 02:13 | 550/53 | 60/42 | 2022-06-17 | 16:09 | 540/53.2 | 53/53 | ||
2021-01-20 | 13:02 | 550/53 | 60/57 | 2 | 2022-07-07 | 13:11 | 540/53.2 | 53/52 | 29 |
2021-01-24 | 15:00 | 560/97.5 | 10/0 | 12 | 2022-07-11 | 01:40 | 560/97.6 | 46/46 | |
2021-02-04 | 06:19 | 550/53 | 60/56 | 0 | 2022-07-17 | 14:20 | 540/53.2 | 53/53 | |
2021-02-16 | 04:00 | 550/53 | 60/57 | 4 | 2022-07-22 | 17:40 | 560/97.6 | 46/46 | |
2021-03-04 | 08:25 | 550/53 | 60/56 | 2022-07-24 | 13:38 | 540/53.2 | 53/51 | ||
2021-03-11 | 08:13 | 550/53 | 60/60 | 9 | 2022-08-10 | 02:15 | 540/53.2 | 52/51 | |
2021-03-14 | 10:01 | 550/53 | 60/58 | 2022-08-12 | 21:40 | 560/97.6 | 46/46 | ||
2021-03-24 | 08:28 | 550/53 | 60/45 | 2022-08-19 | 19:21 | 540/53.2 | 53/53 | ||
2022-08-19 | 19:21 | 540/53.2 | 53/53 | 2022-08-28 | 03:41 | 540/53.2 | 54/51 | ||
2021-04-07 | 16:34 | 550/53 | 60/60 | 2022-08-31 | 05:40 | 560/97.6 | 46/46 | ||
2021-04-29 | 03:44 | 550/53 | 60/60 | 6 | 2022-09-05 | 02:10 | 540/53.2 | 51/46 | |
2021-05-04 | 19:01 | 550/53 | 60/60 | 2 | 2022-09-11 | 01:20 | 540/53.2 | 34/31 | |
2021-05-09 | 06:42 | 550/53 | 60/58 | 6 | 2022-09-19 | 00:19 | 540/53.2 | 54/53 | 5 |
2021-05-15 | 22:56 | 569–582/53 | 52/49 | 2022-09-24 | 23:32 | 540/53.2 | 52/51 | ||
2021-05-26 | 18:59 | 550/53 | 60/60 | 40 * | 2022-10-05 | 23:11 | 540/53.2 | 52/52 | |
2021-06-30 | 19:31 | 560/97.5 | 3/3 | 2022-10-20 | 14:51 | 540/53.2 | 54/53 | −3 | |
2021-09-14 | 03:56 | 570/70 | 51/50 | 2022-10-28 | 01:14 | 540/53.2 | 53/53 | 0 | |
2021-11-13 | 11:20 | 540/53.2 | 53/52 | 0 | 2022-12-17 | 21:32 | 540/53.2 | 54/54 | 13 |
2021-12-02 | 23:12 | 540/53.2 | 48/48 | 2022-12-28 | 09:34 | 530/43 | 54/54 | ||
2021-12-18 | 12:42 | 540/53.2 | 52/50 | 2 |
References
- Cade, W.B., III; Chan-Park, C. The Origin of “Space Weather”. Space Weather 2015, 13, 99–103. [Google Scholar] [CrossRef]
- Pirjola, R.; Kauristie, K.; Lappalainen, H.; Viljanen, A.; Pulkkinen, A. Space weather risk. Space Weather 2005, 3, 1–11. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Biffis, E.; Hapgood, M.A.; Green, L.; Bisi, M.M.; Bentley, R.D.; Wicks, R.; McKinnell, L.A.; Gibbs, M.; Burnett, C. The Economic Impact of Space Weather: Where Do We Stand? Risk Anal. 2017, 37, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Oughton, E.J.; Skelton, A.; Horne, R.B.; Thomson, A.W.P.; Gaunt, C.T. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 2017, 15, 65–83. [Google Scholar] [CrossRef]
- Saito, S.; Wickramasinghe, N.K.; Sato, T.; Shiota, D. Estimate of economic impact of atmospheric radiation storm associated with solar energetic particle events on aircraft operations. Earth Planets Space 2021, 73, 57. [Google Scholar] [CrossRef]
- Schwenn, R. Space Weather: The Solar Perspective. Living Rev. Sol. Phys. 2006, 3, 2. [Google Scholar] [CrossRef]
- Temmer, M. Space weather: The solar perspective. Living Rev. Sol. Phys. 2021, 18, 4. [Google Scholar] [CrossRef]
- Gopalswamy, N. The Sun and Space Weather. Atmosphere 2022, 13, 1781. [Google Scholar] [CrossRef]
- Fletcher, L.; Dennis, B.R.; Hudson, H.S.; Krucker, S.; Phillips, K.; Veronig, A.; Battaglia, M.; Bone, L.; Caspi, A.; Chen, Q.; et al. An Observational Overview of Solar Flares. Space Sci. Rev. 2011, 159, 19–106. [Google Scholar] [CrossRef]
- Benz, A.O. Flare Observations. Living Rev. Sol. Phys. 2017, 14, 2. [Google Scholar] [CrossRef]
- Chen, P.F. Coronal Mass Ejections: Models and Their Observational Basis. Living Rev. Sol. Phys. 2011, 8, 1. [Google Scholar] [CrossRef]
- Webb, D.F.; Howard, T.A. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys. 2012, 9, 3. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 1990, 17, 901–904. [Google Scholar] [CrossRef]
- Zhang, J.; Richardson, I.G.; Webb, D.F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.C.; Nitta, N.V.; Poomvises, W.; Thompson, B.J.; Wu, C.C.; et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J. Geophys. Res. Space Phys. 2007, 112, A10102. [Google Scholar] [CrossRef]
- Gopalswamy, N. Solar connections of geoeffective magnetic structures. J. Atmos. Sol.-Terr. Phys. 2008, 70, 2078–2100. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2012, 2, A01. [Google Scholar] [CrossRef]
- Watari, S. Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 2017, 69, 70. [Google Scholar] [CrossRef]
- Richardson, I.G.; Webb, D.F.; Zhang, J.; Berdichevsky, D.B.; Biesecker, D.A.; Kasper, J.C.; Kataoka, R.; Steinberg, J.T.; Thompson, B.J.; Wu, C.C.; et al. Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions. J. Geophys. Res. Space Phys. 2006, 111, A07S09. [Google Scholar] [CrossRef]
- Verbanac, G.; Vršnak, B.; Živković, S.; Hojsak, T.; Veronig, A.M.; Temmer, M. Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 2011, 533, A49. [Google Scholar] [CrossRef]
- Desai, M.; Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 2016, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.L.; Dalla, S. Acceleration and Propagation of Solar Energetic Particles. Space Sci. Rev. 2017, 212, 1107–1136. [Google Scholar] [CrossRef]
- Miteva, R.; Samwel, S.W.; Costa-Duarte, M.V. The Wind/EPACT Proton Event Catalog (1996–2016). Sol. Phys. 2018, 293, 27. [Google Scholar] [CrossRef]
- Samwel, S.W.; Miteva, R. Catalogue of in situ observed solar energetic electrons from ACE/EPAM instrument. Mon. Not. R. Astron. Soc. 2021, 505, 5212–5227. [Google Scholar] [CrossRef]
- Strauss, R.D.; Leske, R.A.; Rankin, J.S. The Modulation of Anomalous and Galactic Cosmic-Ray Oxygen over Successive Solar Cycle Minima. Astrophys. J. 2023, 944, 114. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Song, X.; Huo, R.; Luo, X. Astronaut Radiation Dose Calculation With a New Galactic Cosmic Ray Model and the AMS-02 Data. Space Weather 2023, 21, e2022SW003285. [Google Scholar] [CrossRef]
- Miyake, S.; Kataoka, R.; Sato, T. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25. Space Weather 2017, 15, 589–605. [Google Scholar] [CrossRef]
- Semkova, J.; Dachev, T.; Koleva, R.; Bankov, N.; Maltchev, S.; Benghin, V.; Shurshakov, V.; Petrov, V. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope. J. Space Weather Space Clim. 2014, 4, A32. [Google Scholar] [CrossRef]
- Schwadron, N.A.; Cooper, J.F.; Desai, M.; Downs, C.; Gorby, M.; Jordan, A.P.; Joyce, C.J.; Kozarev, K.; Linker, J.A.; Mikíc, Z.; et al. Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects. Space Sci. Rev. 2017, 212, 1069–1106. [Google Scholar] [CrossRef]
- Semkova, J.; Koleva, R.; Benghin, V.; Dachev, T.; Matviichuk, Y.; Tomov, B.; Krastev, K.; Maltchev, S.; Dimitrov, P.; Mitrofanov, I.; et al. Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars orbit. Icarus 2018, 303, 53–66. [Google Scholar] [CrossRef]
- Witasse, O.; Sánchez-Cano, B.; Mays, M.L.; Kajdič, P.; Opgenoorth, H.; Elliott, H.A.; Richardson, I.G.; Zouganelis, I.; Zender, J.; Wimmer-Schweingruber, R.F.; et al. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J. Geophys. Res. Space Phys. 2017, 122, 7865–7890. [Google Scholar] [CrossRef]
- Pulkkinen, T. Space Weather: Terrestrial Perspective. Living Rev. Sol. Phys. 2007, 4, 1. [Google Scholar] [CrossRef]
- Dungey, J.W. The Steady State of the Chapman-Ferraro Problem in Two Dimensions. J. Geophys. Res. 1961, 66, 1043–1047. [Google Scholar] [CrossRef]
- Akasofu, S.I. A Historical Review of the Geomagnetic Storm-Producing Plasma Flows from the Sun. Space Sci. Rev. 2011, 164, 85–132. [Google Scholar] [CrossRef]
- Owens, M.J.; Barnard, L.A.; Pope, B.J.S.; Lockwood, M.; Usoskin, I.; Asvestari, E. Solar Energetic-Particle Ground-Level Enhancements and the Solar Cycle. Sol. Phys. 2022, 297, 105. [Google Scholar] [CrossRef]
- Hajra, R. Intense Geomagnetically Induced Currents (GICs): Association with Solar and Geomagnetic Activities. Sol. Phys. 2022, 297, 14. [Google Scholar] [CrossRef]
- Wawrzaszek, A.; Gil, A.; Modzelewska, R.; Tsurutani, B.T.; Wawrzaszek, R. Analysis of Large Geomagnetically Induced Currents During the 7–8 September 2017 Storm: Geoelectric Field Mapping. Space Weather 2023, 21, e2022SW003383. [Google Scholar] [CrossRef]
- Miteva, R. On extreme space weather events: Solar eruptions, energetic protons and geomagnetic storms. Adv. Space Res. 2020, 66, 1977–1991. [Google Scholar] [CrossRef]
- Riley, P. On the probability of occurrence of extreme space weather events. Space Weather 2012, 10, 1–12. [Google Scholar] [CrossRef]
- Riley, P.; Baker, D.; Liu, Y.D.; Verronen, P.; Singer, H.; Güdel, M. Extreme Space Weather Events: From Cradle to Grave. Space Sci. Rev. 2018, 214, 21. [Google Scholar] [CrossRef]
- Cliver, E.W.; Schrijver, C.J.; Shibata, K.; Usoskin, I.G. Extreme solar events. Living Rev. Sol. Phys. 2022, 19, 2. [Google Scholar] [CrossRef]
- Carrington, R.C. Description of a Singular Appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 1859, 20, 13–15. [Google Scholar] [CrossRef]
- Hodgson, R. On a curious Appearance seen in the Sun. Mon. Not. R. Astron. Soc. 1859, 20, 15–16. [Google Scholar] [CrossRef]
- Hapgood, M.; Angling, M.J.; Attrill, G.; Bisi, M.; Cannon, P.S.; Dyer, C.; Eastwood, J.P.; Elvidge, S.; Gibbs, M.; Harrison, R.A.; et al. Development of Space Weather Reasonable Worst Case Scenarios for the UK National Risk Assessment. Space Weather 2021, 19, e2020SW002593. [Google Scholar] [CrossRef]
- Buzulukova, N.; Tsurutani, B. Space Weather: From Solar Origins to Risks and Hazards Evolving in Time. Front. Astron. Space Sci. 2022, 9, 429. [Google Scholar] [CrossRef]
- Green, J.C.; Likar, J.; Shprits, Y. Impact of space weather on the satellite industry. Space Weather 2017, 15, 804–818. [Google Scholar] [CrossRef]
- Mitra, A.P. Ionospheric Effects of Solar Flares; Reidel: Boston, MA, USA, 1974; Volume 46. [Google Scholar] [CrossRef]
- Khalil, K.I.; Samwel, S.W. Effect of Air Drag Force on Low Earth Orbit Satellites During Maximum and Minimum Solar Activity. Space Res. J. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Zesta, E. Satellite Orbital Drag During Magnetic Storms. Space Weather 2019, 17, 1510–1533. [Google Scholar] [CrossRef]
- Hapgood, M.; Liu, H.; Lugaz, N. SpaceX—Sailing Close to the Space Weather? Space Weather 2022, 20, e2022SW003074. [Google Scholar] [CrossRef]
- Trottet, G.; Samwel, S.; Klein, K.L.; Dudok de Wit, T.; Miteva, R. Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events. Sol. Phys. 2015, 290, 819–839. [Google Scholar] [CrossRef]
- Samwel, S.W.; Hady, A.A. Space radiation environment forecast for EGYPTSAT-2 satellite. Space Weather 2009, 7, 5. [Google Scholar] [CrossRef]
- Samwel, S.W.; El-Aziz, E.A.; Garrett, H.B.; Hady, A.A.; Ibrahim, M.; Amin, M.Y. Space radiation impact on smallsats during maximum and minimum solar activity. Adv. Space Res. 2019, 64, 239–251. [Google Scholar] [CrossRef]
- Iucci, N.; Levitin, A.E.; Belov, A.V.; Eroshenko, E.A.; Ptitsyna, N.G.; Villoresi, G.; Chizhenkov, G.V.; Dorman, L.I.; Gromova, L.I.; Parisi, M.; et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather 2005, 3, 16. [Google Scholar] [CrossRef]
- Titus, J.L. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs. IEEE Trans. Nucl. Sci. 2013, 60, 1912–1928. [Google Scholar] [CrossRef]
- Luza, L.M.; Wrobel, F.; Entrena, L.; Dilillo, L. Impact of Atmospheric and Space Radiation on Sensitive Electronic Devices. In Proceedings of the 2022 IEEE European Test Symposium (ETS), Barcelona, Spain, 23–27 May 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Lin, D.; Wang, W.; Garcia-Sage, K.; Yue, J.; Merkin, V.; McInerney, J.M.; Pham, K.; Sorathia, K. Thermospheric Neutral Density Variation during the “SpaceX” Storm: Implications From Physics-Based Whole Geospace Modeling. Space Weather 2022, 20, e2022SW003254. [Google Scholar] [CrossRef]
- Fang, T.W.; Kubaryk, A.; Goldstein, D.; Li, Z.; Fuller-Rowell, T.; Millward, G.; Singer, H.J.; Steenburgh, R.; Westerman, S.; Babcock, E. Space Weather Environment During the SpaceX Starlink Satellite Loss in February 2022. Space Weather 2022, 20, e2022SW003193. [Google Scholar] [CrossRef]
- Berger, T.E.; Dominique, M.; Lucas, G.; Pilinski, M.; Ray, V.; Sewell, R.; Sutton, E.K.; Thayer, J.P.; Thiemann, E. The Thermosphere Is a Drag: The 2022 Starlink Incident and the Threat of Geomagnetic Storms to Low Earth Orbit Space Operations. Space Weather 2023, 21, e2022SW003330. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Fujiwara, H.; Jin, H.; Tao, C.; Shinagawa, H.; Miyoshi, Y. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022. J. Space Weather Space Clim. 2022, 12, 41. [Google Scholar] [CrossRef]
- Dang, T.; Li, X.; Luo, B.; Li, R.; Zhang, B.; Pham, K.; Ren, D.; Chen, X.; Lei, J.; Wang, Y. Unveiling the Space Weather During the Starlink Satellites Destruction Event on 4 February 2022. Space Weather 2022, 20, e2022SW003152. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Schaefer, R.; Swartz, W.H. Thermospheric Conditions Associated With the Loss of 40 Starlink Satellites. Space Weather 2022, 20, e2022SW003168. [Google Scholar] [CrossRef]
- Pitout, F.; Astafyeva, E.; Fleury, R.; Maletckii, B.; He, J. Did a minor geomagnetic storm really cause the loss of 40 Starlink satellites? In Proceedings of the SF2A-2022: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, Societe Francaise d’Astronomie et d’Astrophysique (SF2A) 2022, Besançon, France, 7–10 June 2022; pp. 185–189. [Google Scholar]
- Huang, C.Y.Y.; Huang, Y.; Su, Y.J.; Sutton, E.K.; Rotan Hairston, M.; Coley, W.R. Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms. J. Space Weather Space Clim. 2016, 6, A4. [Google Scholar] [CrossRef]
- Fernandez-Gomez, I.; Kodikara, T.; Borries, C.; Forootan, E.; Goss, A.; Schmidt, M.; Codrescu, M.V. Improving estimates of the ionosphere during geomagnetic storm conditions through assimilation of thermospheric mass density. Earth Planets Space 2022, 74, 121. [Google Scholar] [CrossRef]
Date | Name/Type | Orbit/Location | Anomaly Description | Probable Cause |
---|---|---|---|---|
1979-07-11 | Skylab 4 | LEO | orbital decay due to atmospheric drag | solar activity? |
1982-07 | various | ground | failures in railway traffic signaling in Sweden | GICs |
1982-07, 1989-10, 1991-11 | power grid | ground | significant disturbance of UK power system | GICs |
1986-02-08 | MARECS-A | GEO | uncommanded switching anomaly | electron enhancement |
1989-03 | transformers | ground | Hydro-Quebec province blackout (Canada), about 6 million people without electricity for over 9 h; New Jersey (USA) transformer damage | GICs |
1994-01-20 | Intelsat | GEO | corrected loss of attitude control | ? |
Anik E-1 | GEO | corrected loss of attitude control | deep dielectric charging | |
1994-01-21 | Anik E-2 | GEO | hard failure of momentum wheel control, returned to service 6–8 months later | deep dielectric charging |
1997-01-11 | Telstar 40 | GEO | spacecraft failure | deep dielectric charging, GS, SEEs |
1998-05-19 | Galaxy 4 | GEO | altitude control failure, backup failed, lost from service | ? |
2003-10-25 | ADEOS-II | Sun-synchronous | multiple avionics system failures; charge particle radiation exposure; solar panel failure; loss | multiple avionics system failure |
2003-10-30 | power grid | ground | electricity blackout in Sweden, about 50,000 people for 10s minutes | GICs |
2003-10/11 | various | various | 10 satellites lost operational service; 47 satellites reported anomalies | ? |
2006-12-06 | GPS receivers | ground | civilian GPS receivers in the Sun-lit hemisphere had severely affected performance | radio blackout |
2010-04-05 | Galaxy 15 | GEO | solar panel track failure; temporary loss | ? |
2015-11-04 | radar | ground | severely disturbed air-traffic control radar signals in Sweden, Norway and Belgium | radio blackout |
2022-02-03 | Starlink satellites | LEO | loss of 38/49 satellites | ? |
Starlink Launch | GS Dst | ICME | IP Shock | |||
---|---|---|---|---|---|---|
Date | hh:mm | dd/hh/nT | dd/hh/km s | dd/hh/km s | cm | dd/hh:mm/nT |
2020-04-22 | 19:31 | 20/13/ | 20/09/330 | 20/01:33/336 | 6.7 | 20/11:52/ |
2020-10-06 | 11:30 | 05/22/ | 05/17/350 | no | no | 05/19:34/ |
2020-10-24 | 15:32 | 24/07/ | no | no | no | 23/20:16/ |
2021-02-16 | 04:00 | 17/06/ | no | no | no | 13/03:07/ |
2021-03-04 | 08:25 | 03/05/ | no | no | no | 01/04:05/ |
2021-03-14 | 10:01 | 14/10/ | no | no | no | 13/05:06/ |
2021-05-26 | 18:59 | 27/09/ | 26/05/410 | 26/11:45/369 | 10.9 | 27/06:15/ |
2021-12-02 | 23:12 | 02/23/ | no | no | no | 02/15:02/ |
2022-01-19 | 02:03 | 19/04/ | 19/05/610 | 18/22:58/820 | 1.2 | 19/05:05/ |
2022-02-03 | 18:13 | 03/11/ | 02/16/460 | 01/22:27/543 | 4.2 | 03/09:37/ |
2022-04-29 | 21:27 | 30/08/ | no | no | no | 27/13:01/ |
2022-05-13 | 22:08 | 13/22/ | no | no | no | 11/19:55/ |
2022-07-07 | 13:11 | 07/23/ | 07/12/380 | no | no | 07/12:48/ |
2022-09-05 | 02:10 | 04/17/ | no | no | no | 04/05:24/ |
2022-12-28 | 09:34 | 27/16/ | no | no | no | 26/12:24/ |
Starlink Launch | SFs | SEPs | SEEs | |
---|---|---|---|---|
Date | hh:mm | dd/hh:mm/class | dd/hh:mm | dd/hh:mm |
2020-04-22 | 19:31 | no | no | no |
2020-10-06 | 11:30 | no | no | no |
2020-10-24 | 15:32 | no | no | no |
2021-02-16 | 04:00 | no | no | no |
2021-03-04 | 08:25 | no | no | no |
2021-03-14 | 10:01 | no | no | no |
2021-05-26 | 18:59 | 26/18:51/18:58/19:47/B7.0 | no | no |
2021-12-02 | 23:12 | no | no | no |
2022-01-19 | 02:03 | no | no | 18/19:26 |
2022-02-03 | 18:13 | 02/17:42/17:47/17:59/C1.1 | no | 03/22:35 |
2022-04-29 | 21:27 | 29/22:42/22:56/23:14/C3.0 | 29/17:03 | 29/09:12 |
2022-05-13 | 22:08 | 13/22:07/22:26/22:34/C2.6 | no | no |
2022-07-07 | 13:11 | no | no | no |
2022-09-05 | 02:10 | 05/01:53/02:05/02:19/C5.0 | no | no |
2022-12-28 | 09:34 | 22/09:34/09:42/09:49/C2.4 | no | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miteva, R.; Samwel, S.W.; Tkatchova, S. Space Weather Effects on Satellites. Astronomy 2023, 2, 165-179. https://doi.org/10.3390/astronomy2030012
Miteva R, Samwel SW, Tkatchova S. Space Weather Effects on Satellites. Astronomy. 2023; 2(3):165-179. https://doi.org/10.3390/astronomy2030012
Chicago/Turabian StyleMiteva, Rositsa, Susan W. Samwel, and Stela Tkatchova. 2023. "Space Weather Effects on Satellites" Astronomy 2, no. 3: 165-179. https://doi.org/10.3390/astronomy2030012
APA StyleMiteva, R., Samwel, S. W., & Tkatchova, S. (2023). Space Weather Effects on Satellites. Astronomy, 2(3), 165-179. https://doi.org/10.3390/astronomy2030012