Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Spercheios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9313 KiB  
Article
Potential of Two SAR-Based Flood Mapping Approaches in Supporting an Integrated 1D/2D HEC-RAS Model
by Ioanna Zotou, Kleanthis Karamvasis, Vassilia Karathanassi and Vassilios A. Tsihrintzis
Water 2022, 14(24), 4020; https://doi.org/10.3390/w14244020 - 9 Dec 2022
Cited by 4 | Viewed by 3370
Abstract
This study investigates the potential of Sentinel-1 data in assisting flood modeling procedures. Two different synthetic aperture radar (SAR) processing methodologies, one simplified based on single-flood image thresholding and one automatic based on SAR statistical temporal analysis, were exploited to delineate the flooding [...] Read more.
This study investigates the potential of Sentinel-1 data in assisting flood modeling procedures. Two different synthetic aperture radar (SAR) processing methodologies, one simplified based on single-flood image thresholding and one automatic based on SAR statistical temporal analysis, were exploited to delineate the flooding caused by a storm event that took place in Spercheios River, Central Greece. The storm event was simulated by coupling a HEC-HMS hydrologic model and an integrated 1D/2D HEC-RAS hydraulic model. Both SAR methodologies were compared to each other and also used as a reference to test the sensitivity of the hydraulic model in the variation of upstream discharge and roughness coefficient. Model sensitivity was investigated with respect to the change in the derived inundation extent and three additional metrics: the Critical Success Index (CSI), the Hit Rate (HR), and the False Alarm Ratio (FAR). The model response was found to be affected in the following order: by the upstream inflow, and by the variation of the roughness coefficient in the main channel and in the land use “cultivated crops”. The discrepancies observed between model- and SAR-derived inundation products are associated with the uncertainty accompanying the SAR processing and the utilized satellite data itself, the underlying topography, and the structural uncertainty inherent in the modeling procedure. Regarding the SAR methodologies tested, the second one (FLOMPY approach) proved to be more suitable, yielding a more coherent and realistic flooded area. According to the applied metrics and considering as reference the FLOMPY result, model performance ranged between 22–27.5% (CSI), 36.9–60.4% (HR), and 62.1–68.2% (FAR). Full article
(This article belongs to the Special Issue Flood Risk and Response Management)
Show Figures

Figure 1

16 pages, 9313 KiB  
Article
Evaluating Nature-Based Solution for Flood Reduction in Spercheios River Basin Part 2: Early Experimental Evidence
by Christos Spyrou, Michael Loupis, Nikos Charizopoulos, Panagiotis Arvanitis, Angeliki Mentzafou, Elias Dimitriou, Sisay E. Debele, Jeetendra Sahani and Prashant Kumar
Sustainability 2022, 14(16), 10345; https://doi.org/10.3390/su141610345 - 19 Aug 2022
Cited by 9 | Viewed by 2945
Abstract
A number of Nature Based Solutions (NBS) are being used around the world in order to address various hydrometeorological hazards as a more environmentally friendly alternative to hard structures. Such a solution has been created in the Spercheios river basin in Central Greece, [...] Read more.
A number of Nature Based Solutions (NBS) are being used around the world in order to address various hydrometeorological hazards as a more environmentally friendly alternative to hard structures. Such a solution has been created in the Spercheios river basin in Central Greece, which is susceptible to heavy rainfall and river bank overflow due to flood water from upstream, in order to mitigate flood and drought impacts under current and future climate conditions. Here a first attempt is made to use actual measurements taken from various sources in the river, including in-situ and satellite data, in order to establish early experimental evidence of the NBS efficiency in the area. The measurements include data from automated hydrological stations from the OpenHi network, satellite remote sensing data and field measurements performed along the Spercheios River basin. For each measurement used, different analysis has been performed based on data availability and pertinence to the NBS efficiency. Preliminary results presented here show that the NBS functions as designed and provides protection against flooding in the area, and can potentially diminish the risk of drought. The results are in agreement with the numerical outputs already presented in our previous work. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

24 pages, 12261 KiB  
Article
Evaluating the Forecast Skill of a Hydrometeorological Modelling System in Greece
by George Varlas, Anastasios Papadopoulos, George Papaioannou and Elias Dimitriou
Atmosphere 2021, 12(7), 902; https://doi.org/10.3390/atmos12070902 - 13 Jul 2021
Cited by 13 | Viewed by 3767
Abstract
A hydrometeorological forecasting system has been operating at the Institute of Marine Biological Resources and Inland Waters (IMBRIW) of the Hellenic Centre for Marine Research (HCMR) since September 2015. The system consists of the Advanced Weather Research and Forecasting (WRF-ARW) model, the WRF-Hydro [...] Read more.
A hydrometeorological forecasting system has been operating at the Institute of Marine Biological Resources and Inland Waters (IMBRIW) of the Hellenic Centre for Marine Research (HCMR) since September 2015. The system consists of the Advanced Weather Research and Forecasting (WRF-ARW) model, the WRF-Hydro hydrological model, and the HEC-RAS hydraulic–hydrodynamic model. The system provides daily 120 h weather forecasts focusing on Greece (4 km horizontal resolution) and hydrological forecasts for the Spercheios and Evrotas rivers in Greece (100 m horizontal resolution), also providing flash flood inundation forecasts when needed (5 m horizontal resolution). The main aim of this study is to evaluate precipitation forecasts produced in a 4-year period (September 2015–August 2019) using measurements from meteorological stations across Greece. Water level forecasts for the Evrotas and Spercheios rivers were also evaluated using measurements from hydrological stations operated by the IMBRIW. Moreover, the forecast skill of the chained meteorological–hydrological–hydraulic operation of the system was investigated during a catastrophic flash flood in the Evrotas river. The results indicated that the system provided skillful precipitation and water level forecasts. The best evaluation results were yielded during rainy periods. They also demonstrated that timely flash flood forecasting products could benefit flood warning and emergency responses due to their efficiency and increased lead time. Full article
Show Figures

Figure 1

20 pages, 7885 KiB  
Article
Evaluating Nature-Based Solution for Flood Reduction in Spercheios River Basin under Current and Future Climate Conditions
by Christos Spyrou, Michael Loupis, Νikos Charizopoulos, Ilektra Apostolidou, Angeliki Mentzafou, George Varlas, Anastasios Papadopoulos, Elias Dimitriou, Depy Panga, Lamprini Gkeka, Paul Bowyer, Susanne Pfeifer, Sisay E. Debele and Prashant Kumar
Sustainability 2021, 13(7), 3885; https://doi.org/10.3390/su13073885 - 1 Apr 2021
Cited by 24 | Viewed by 6292
Abstract
Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work [...] Read more.
Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge. Full article
Show Figures

Figure 1

27 pages, 54441 KiB  
Article
Modeling the Effects of Anthropogenic Land Cover Changes to the Main Hydrometeorological Factors in a Regional Watershed, Central Greece
by Angeliki Mentzafou, George Varlas, Elias Dimitriou, Anastasios Papadopoulos, Ioannis Pytharoulis and Petros Katsafados
Climate 2019, 7(11), 129; https://doi.org/10.3390/cli7110129 - 7 Nov 2019
Cited by 18 | Viewed by 4477
Abstract
In this study, the physically-based hydrological model MIKE SHE was employed to investigate the effects of anthropogenic land cover changes to the hydrological cycle components of a regional watershed in Central Greece. Three case studies based on the land cover of the years [...] Read more.
In this study, the physically-based hydrological model MIKE SHE was employed to investigate the effects of anthropogenic land cover changes to the hydrological cycle components of a regional watershed in Central Greece. Three case studies based on the land cover of the years 1960, 1990, and 2018 were examined. Copernicus Climate Change Service E-OBS gridded meteorological data for 45 hydrological years were used as forcing for the model. Evaluation against observational data yielded sufficient quality for daily air temperature and precipitation. Simulation results demonstrated that the climatic variabilities primarily in precipitation and secondarily in air temperature affected basin-averaged annual actual evapotranspiration and average annual river discharge. Nevertheless, land cover effects can locally outflank the impact of climatic variability as indicated by the low interannual variabilities of differences in annual actual evapotranspiration among case studies. The transition from forest to pastures or agricultural land reduced annual actual evapotranspiration and increased average annual river discharge while intensifying the vulnerability to hydrometeorological-related hazards such as droughts or floods. Hence, the quantitative assessment of land cover effects presented in this study can contribute to the design and implementation of successful land cover and climate change mitigation and adaptation policies. Full article
(This article belongs to the Special Issue Climate and Atmospheric Dynamics and Predictability)
Show Figures

Figure 1

Back to TopTop