Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Sophora flavescens Ait.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 13929 KiB  
Article
Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam
by Phan Nguyen Truong Thang, Viet-Hung Tran, Tran Anh Vu, Nguyen Ngoc Vinh, Duyen Thi My Huynh and Duy Toan Pham
Pharmaceuticals 2022, 15(11), 1384; https://doi.org/10.3390/ph15111384 - 10 Nov 2022
Cited by 10 | Viewed by 2474
Abstract
Traditional/herbal medicine has gained increasing interests recently, especially in Asian countries such as Vietnam, due to its diverse therapeutic actions. In the treasure of Vietnamese medicinal plants, one of the potential herbs is the roots of Sophora flavescens Ait. (SF, “Kho sam” in [...] Read more.
Traditional/herbal medicine has gained increasing interests recently, especially in Asian countries such as Vietnam, due to its diverse therapeutic actions. In the treasure of Vietnamese medicinal plants, one of the potential herbs is the roots of Sophora flavescens Ait. (SF, “Kho sam” in Vietnamese). However, limited information has been reported on the Vietnamese SF compositions and their respective alkaloids’ anti-acetylcholinesterase action. Thus, this study investigated the extractions, isolations, identifications, and in-vitro antioxidant, cytotoxicity, and acetylcholinesterase inhibitory activities, of the SF root extracts and their purified alkaloid compounds. To this end, four pure compounds were successfully isolated, purity-tested by HPLC, and structurally identified by spectroscopic techniques of FTIR, MS, and NMR. These compounds, confirmed to be oxysophocarpine, oxymatrine, matrine, and sophoridine, were then determined their therapeutic actions. The SF extracts and the compounds did not possess significant antioxidant activity using the DPPH and MDA assays, and cytotoxicity action using the MTT assay on the MDA-MB-231 breast cancer cell line. On the other hand, the SF total extract yielded a moderate acetylcholinesterase inhibition effect, with an IC50 of 0.1077 ± 0.0023 mg/mL. In summary, the SF extract demonstrated potential effects as an anti-acetylcholinesterase agent and could be further researched to become a pharmaceutical product for diseases related to acetylcholine deficiency, such as dementia. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

11 pages, 3409 KiB  
Article
The Chloroform Extracts of Vietnamese Sophora flavescens Ait. Inhibit the Proliferation of HepG2 Cells through Apoptosis Induction
by Cao Ngoc Minh Trang, Ho Nguyen Quynh Chi, Nguyen Khac Manh, Hoang Nghia Son, Dai-Nghiep Ngo and Le Thanh Long
Appl. Sci. 2022, 12(12), 5906; https://doi.org/10.3390/app12125906 - 10 Jun 2022
Viewed by 2312
Abstract
The present study evaluated the effects of Sophora flavescens Ait. root extract on the proliferation of human hepatoma cell line HepG2. HPLC-UV analysis showed that the highest matrine and oxymatrine contents were obtained in the chloroform extract, compared to ethanol extract and ethyl [...] Read more.
The present study evaluated the effects of Sophora flavescens Ait. root extract on the proliferation of human hepatoma cell line HepG2. HPLC-UV analysis showed that the highest matrine and oxymatrine contents were obtained in the chloroform extract, compared to ethanol extract and ethyl acetate extract. The morphological analysis revealed that the chloroform extract of Sophora flavescens Ait. (SFA-CHCl3 extract) induced alterations of HepG2 cell morphology, resulting in the shrinkage of cells, the formation of debris, and cell detachment. The proliferation of HepG2 cells was inhibited by SFA-CHCl3 extract treatment. Cell cycle analysis exhibited that the cell proportion of the G0/G1 phase of HepG2 cells with SFA-CHCl3 extract treatment was decreased, while the cell proportion of the G2/M phase was increased. Flow cytometry analysis indicated a dramatic increase in the apoptotic percentage of HepG2 cells over the time of SFA-CHCl3 extract treatment. The SFA-CHCl3 extract also caused morphological changes in HepG2 nuclear, including chromatin condensation and DNA fragmentation. SFA-CHCl3 extract treatment induced the bax up-regulation and the bcl-2 down-regulation in HepG2 cells. These results revealed that SFA-CHCl3 extract could be a potential apoptosis inducer in HepG2 cells. Full article
Show Figures

Figure 1

12 pages, 1287 KiB  
Article
Use of an UHPLC-MS/MS Method for Determination of Kuraridin and Characterization of Its Metabolites in Rat Plasma after Oral Administration
by Yi Liu, Lei Chen, Wei Cai, Lin-lin Zhao and Zhi-xian Mo
Molecules 2018, 23(2), 132; https://doi.org/10.3390/molecules23020132 - 24 Jan 2018
Cited by 9 | Viewed by 4213
Abstract
Kuraridin is an active natural prenylated flavonoid ingredient originating from the well-known traditional Chinese medicine Sophora flavescens Ait., that possesses various bioactivities, such as antitumor activity, PLCγ1 inhibitory activity, glycosidase inhibitory activity, etc. However, there is no report on the plasma [...] Read more.
Kuraridin is an active natural prenylated flavonoid ingredient originating from the well-known traditional Chinese medicine Sophora flavescens Ait., that possesses various bioactivities, such as antitumor activity, PLCγ1 inhibitory activity, glycosidase inhibitory activity, etc. However, there is no report on the plasma metabolic profile and pharmacokinetic study of kuraridin. The current study was designed to use an ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and characterization metabolites in rat plasma after oral administration of kuraridin. A liquid-liquid extraction method with ethyl acetate-acetonitrile (1:3) was used to extract the kuraridin from rat plasma samples. The chromatographic separation was carried out on a Hypersil GOLD UHPLC C18 column equipped with a C18 guard cartridge using a gradient elution with organic solvent-water as mobile phase. Based on comparing the retention times with reference standards or on the basis of MS2 fragmentation behaviors, a total of 19 metabolites were identified or tentatively characterized from rat plasma. Under the optimized conditions, the method showed good linearity (r2 > 0.99) over the ranges of 1–500 ng/mL for kuraridin. The inter- and intra-day precisions were less than 8.95%, and the accuracy was in the range of −6.27–6.48%. The recovery of kuraridin ranged from 90.1% to 100.4%. The developed UHPLC-MS/MS method was thus successfully applied in the qualitative of metabolites and quantitative analysis of kuraridin in rat plasma. Full article
Show Figures

Figure 1

14 pages, 5383 KiB  
Article
Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry
by Qihong Zhang, Jingbo Yu, Yingyao Wang and Weike Su
Molecules 2016, 21(8), 989; https://doi.org/10.3390/molecules21080989 - 29 Jul 2016
Cited by 18 | Viewed by 7062
Abstract
Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na2CO3 (15%) at 440 [...] Read more.
Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na2CO3 (15%) at 440 rpm/min for 17.0 min and water was used as the sole solvent with a ratio of solvent to solid material of 25 mL/g. Flavonoids prepared by MPET demonstrated relatively higher antioxidant activities in subsequent DPPH and hydroxyl radical scavenging assays. Main constituents in the extracts, including kurarinol, kushenol I/N and kurarinone, were characterized by HPLC-MS/MS, indicating good selective extraction by MPET. Physicochemical property changes of powder during mechanochemical milling were identified by scanning electron microscopy, X-ray powder diffraction, and UV-Vis diffuse-reflectance spectroscopy. Compared with traditional extraction methods, MPET possesses notable advantages of higher selectivity, lower extraction temperature, shorter extraction time, and organic solvent free properties. Full article
(This article belongs to the Special Issue Mechanochemistry)
Show Figures

Figure 1

15 pages, 1802 KiB  
Article
MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats
by Jianzhong Li, Jing Xu, Yiming Lu, Lei Qiu, Weiheng Xu, Bin Lu, Zhenlin Hu, Zhiyong Chu, Yifeng Chai and Junping Zhang
Molecules 2016, 21(5), 649; https://doi.org/10.3390/molecules21050649 - 17 May 2016
Cited by 17 | Viewed by 6432
Abstract
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, [...] Read more.
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy. Full article
Show Figures

Figure 1

8 pages, 120 KiB  
Article
Effect of Ionic Liquids as the Mobile Phase Additives on the HPLC Resolution of Four Active Compounds from Sophora flavescens Ait
by Minglei Tian, Junyu Liu and Kyung Ho Row
Molecules 2009, 14(6), 2127-2134; https://doi.org/10.3390/molecules14062127 - 11 Jun 2009
Cited by 17 | Viewed by 10540
Abstract
The retention behaviour of four active compounds from Sophora Flavescens Ait using three ionic liquids as mobile phase modifiers was examined. The effect of the pH and the amount of ionic liquid modifier on the retention of these compounds was determined in methanol/water [...] Read more.
The retention behaviour of four active compounds from Sophora Flavescens Ait using three ionic liquids as mobile phase modifiers was examined. The effect of the pH and the amount of ionic liquid modifier on the retention of these compounds was determined in methanol/water (v/v) as the mobile phase containing different ionic liquids ranging in concentration from 0.1 mmol/L to 3.0 mmol/L. The ionic liquids showed promise as additives in high-performance liquid chromatography. Full article
(This article belongs to the Collection Ionic Liquids)
Show Figures

Figure 1

Back to TopTop