Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Solanum pinnatisectum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5561 KB  
Article
Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species
by Tatjana Gavrilenko, Galina Pendinen, Olga Antonova, Tamara Makarova and Ramona Thieme
Agronomy 2023, 13(7), 1809; https://doi.org/10.3390/agronomy13071809 - 7 Jul 2023
Cited by 1 | Viewed by 2331
Abstract
We applied a genomic in situ hybridization (GISH) to analyze the genomic constitution of and meiotic pairing in interspecific somatic hybrids, and in a wide subset of backcrossing derivatives (BC1–BC5), from three interspecific combinations involving the cultivated potato, Solanum [...] Read more.
We applied a genomic in situ hybridization (GISH) to analyze the genomic constitution of and meiotic pairing in interspecific somatic hybrids, and in a wide subset of backcrossing derivatives (BC1–BC5), from three interspecific combinations involving the cultivated potato, Solanum tuberosum (AAAA genome), and three diploid (1 EBN) wild Mexican potato species (genome BB)—S. tarnii, S. pinnatisectum, and S. bulbocastanum. The theoretically expected genomic composition was detected in the somatic hybrids (AAAABB) and in the BC1 progeny (AAAAB), whereas in the subsequent BC2–BC4 generations, the partial loss of alien chromosomes was observed and almost all the BC5 genotypes showed a complete chromosome elimination of wild species. GISH revealed a homoeologous pairing between the chromosomes of the A- and the B-genomes in each of the hybrid progenies. Using GISH, we selected introgression lines with a single chromosome of the wild species in a potato genome background, as well as introgression lines with intergenomic recombinant chromosomes. Moreover, via molecular screening, BC hybrids with diagnostic markers for the R-genes conferring resistance to late blight disease and to the quarantine pest of the potato–Columbia root-knot nematode—were selected. The potential application of the results obtained for the planning of introgressive schemes directed to the breeding of advanced lines with multiple disease and pest resistance is discussed. Full article
(This article belongs to the Special Issue Molecular Genetic Studies in Potato Breeding — Series II)
Show Figures

Figure 1

11 pages, 2129 KB  
Article
The Effect of Self-Compatibility Factors on Interspecific Compatibility in Solanum Section Petota
by William L. Behling and David S. Douches
Plants 2023, 12(8), 1709; https://doi.org/10.3390/plants12081709 - 20 Apr 2023
Cited by 6 | Viewed by 2063
Abstract
The relationships of interspecific compatibility and incompatibility in Solanum section Petota are complex. Inquiry into these relationships in tomato and its wild relatives has elucidated the pleiotropic and redundant function of S-RNase and HT which tandemly and independently mediate both interspecific and intraspecific [...] Read more.
The relationships of interspecific compatibility and incompatibility in Solanum section Petota are complex. Inquiry into these relationships in tomato and its wild relatives has elucidated the pleiotropic and redundant function of S-RNase and HT which tandemly and independently mediate both interspecific and intraspecific pollen rejection. Our findings presented here are consistent with previous work conducted in Solanum section Lycopersicon showing that S-RNase plays a central role in interspecific pollen rejection. Statistical analyses also demonstrated that HT-B alone is not a significant factor in these pollinations; demonstrating the overlap in gene function between HT-A and HT-B, as HT-A, was present and functional in all genotypes used. We were not able to replicate the general absence of prezygotic stylar barriers observable in S. verrucosum, which has been attributed to the lack of S-RNase, indicating that other non-S-RNase factors play a significant role. We also demonstrated that Sli played no significant role in these interspecific pollinations, directly conflicting with previous research. It is possible that S. chacoense as a pollen donor is better able to bypass stylar barriers in 1EBN species such as S. pinnatisectum. Consequently, S. chacoense may be a valuable resource in accessing these 1EBN species regardless of Sli status. Full article
(This article belongs to the Special Issue Diploid F1 Hybrid Breeding in Potato)
Show Figures

Figure 1

17 pages, 4471 KB  
Article
The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans
by Hana Dufková, Miroslav Berka, Marie Greplová, Šarlota Shejbalová, Romana Hampejsová, Markéta Luklová, Jaroslava Domkářová, Jan Novák, Viktor Kopačka, Břetislav Brzobohatý and Martin Černý
Plants 2022, 11(1), 61; https://doi.org/10.3390/plants11010061 - 25 Dec 2021
Cited by 14 | Viewed by 4752
Abstract
Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant [...] Read more.
Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding. Full article
Show Figures

Figure 1

20 pages, 919 KB  
Article
Evaluation of Wild Potato Germplasm for Tuber Starch Content and Nitrogen Utilization Efficiency
by Silvia Bachmann-Pfabe and Klaus J. Dehmer
Plants 2020, 9(7), 833; https://doi.org/10.3390/plants9070833 - 2 Jul 2020
Cited by 15 | Viewed by 4041
Abstract
Potato wild relatives provide a considerable source of variation for important traits in cultivated potato (Solanum tuberosum L.) breeding. This study evaluates the variation of tuber starch content and nitrogen utilization efficiency (NutE) in wild potato germplasm. For the experiments regarding starch [...] Read more.
Potato wild relatives provide a considerable source of variation for important traits in cultivated potato (Solanum tuberosum L.) breeding. This study evaluates the variation of tuber starch content and nitrogen utilization efficiency (NutE) in wild potato germplasm. For the experiments regarding starch content, 28 accessions of ten different tuber-bearing wild Solanum-species were chosen, and in vitro plantlets were raised from seeds. Twenty plantlets (= genotypes) per accession were then cultivated in the greenhouse until natural senescence and tuber starch content was determined. The average tuber starch content across all genotypes tested was 21.7% of fresh mass. Contents above 28% of fresh mass were found in 50 genotypes, belonging to the species S. chacoense, S. commersonii, S. jamesii, and S. pinnatisectum. Subsequently, 22 wild genotypes revealing high tuber starch contents and four modern varieties of cultivated potato were studied as in vitro plantlets under optimal and low N supply (30 and 7.5 mmol L−1 N). Low N supply lead to a genotype-dependent reduction of shoot dry mass between 13 and 46%. The majority of the wild types also reduced root dry mass by 26 to 62%, while others maintained root growth and even exceeded the NutE of the varieties under low N supply. Thus, wild potato germplasm appears superior to cultivars in terms of tuber starch contents and N utilization efficiency, which should be investigated in further studies. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

17 pages, 3340 KB  
Article
The Histological, Effectoromic, and Transcriptomic Analyses of Solanum pinnatisectum Reveal an Upregulation of Multiple NBS-LRR Genes Suppressing Phytophthora infestans Infection
by Biao Gu, Xiaoli Cao, Xiaoli Zhou, Zhaodan Chen, Qinhu Wang, Wei Liu, Qin Chen and Hua Zhao
Int. J. Mol. Sci. 2020, 21(9), 3211; https://doi.org/10.3390/ijms21093211 - 1 May 2020
Cited by 25 | Viewed by 4838
Abstract
Utilization of disease resistance components from wild potatoes is a promising and sustainable approach to control Phytophthora blight. Here, we combined avirulence (Avr) genes screen with RNA-seq analysis to discover the potential mechanism of resistance in Mexican wild potato species, Solanum [...] Read more.
Utilization of disease resistance components from wild potatoes is a promising and sustainable approach to control Phytophthora blight. Here, we combined avirulence (Avr) genes screen with RNA-seq analysis to discover the potential mechanism of resistance in Mexican wild potato species, Solanum pinnatisectum. Histological characterization displayed that hyphal expansion was significantly restricted in epidermal cells and mesophyll cell death was predominant, indicating that a typical defense response was initiated in S. pinnatisectum. Inoculation of S. pinnatisectum with diverse Phytophthora infestans isolates showed distinct resistance patterns, suggesting that S. pinnatisectum has complex genetic resistance to most of the prevalent races of P. infestans in northwestern China. Further analysis by Avr gene screens and comparative transcriptomic profiling revealed the presence and upregulation of multiple plant NBS-LRR genes corresponding to biotic stresses. Six NBS-LRR alleles of R1, R2, R3a, R3b, R4, and Rpi-smira2 were detected, and over 60% of the 112 detected NLR proteins were significantly induced in S. pinnatisectum. On the contrary, despite the expression of the Rpi-blb1, Rpi-vnt1, and Rpi-smira1 alleles, fewer NLR proteins were expressed in susceptible Solanum cardophyllum. Thus, the enriched NLR genes in S. pinnatisectum make it an ideal genetic resource for the discovery and deployment of resistance genes for potato breeding. Full article
(This article belongs to the Special Issue Plant Disease Resistance)
Show Figures

Figure 1

Back to TopTop