Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Sm2O3-supported Co-Ni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2882 KB  
Article
Water–Gas Shift Activity over Supported Ni and Co Catalysts
by Weerayut Srichaisiriwech and Pannipa Nachai
J. Compos. Sci. 2025, 9(11), 609; https://doi.org/10.3390/jcs9110609 - 5 Nov 2025
Viewed by 1508
Abstract
The activity of Co- and Ni-containing ceria-based catalysts for water–gas shift (WGS) reaction were examined in this work. The catalysts were prepared by the urea co-precipitation method. Sm and Pr dopant (5 wt.%) was used as a structural stabilizer of CeO2, [...] Read more.
The activity of Co- and Ni-containing ceria-based catalysts for water–gas shift (WGS) reaction were examined in this work. The catalysts were prepared by the urea co-precipitation method. Sm and Pr dopant (5 wt.%) was used as a structural stabilizer of CeO2, while Co or Ni was used in a small amount (1 wt.%). H2-TPR experiments indicate that both Sm and Pr addition increased the reducibility of CeO2. Among the studies’ catalysts, 1%Ni/Ce5%SmO exhibited the highest WGS activity. In addition, WGS rate was measured in the temperature range of 200–400 °C for Ni supported on CeO2, Ce5%SmO, and Ce5%PrO. The activation energy of the reaction over 1%Ni/Ce5%SmO was 57 kJ/mol, while it was 61 and 66 kJ/mol, respectively, over 1%Ni/Ce5%PrO and 1%Ni/CeO2 catalysts. A WGS reaction mechanism, CO adsorbed on the metal cluster is oxidized by oxygen supplied from the CeO2 support at the metal–ceria interface. This oxygen is then re-oxidized by H2O, which caps the oxygen vacancy on the ceria surface, and thereby oxygen vacancies serve as active sites for the WGS reaction. Raman experiments indicate that the presence of Sm in 1%Ni/Ce5%SmO catalyst promoted the formation of oxygen vacancies, leading to enhanced WGS performance. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

18 pages, 10185 KB  
Article
Structured Catalyst for Indirect Internal Reforming (IIR) of Biogas in Solid Oxide Fuel Cell (SOFC)
by Anna Prioriello, Leonardo Duranti, Igor Luisetto, Frederick Sanna, Claudio Larosa, Maria Luisa Grilli and Elisabetta Di Bartolomeo
Catalysts 2023, 13(7), 1129; https://doi.org/10.3390/catal13071129 - 20 Jul 2023
Cited by 8 | Viewed by 3027
Abstract
The aim of this work is the development of a structured catalyst for the dry reforming of biogas to be used as a pre–reformer in the indirect internal reforming configuration (IIR) of solid oxide fuel cells (SOFCs). The structured catalyst is based on [...] Read more.
The aim of this work is the development of a structured catalyst for the dry reforming of biogas to be used as a pre–reformer in the indirect internal reforming configuration (IIR) of solid oxide fuel cells (SOFCs). The structured catalyst is based on NiCrAl foams coated with ruthenium (nominal loading 3.0 wt%) supported on a CaZr0.85Sm0.15O3−δ (CZS) perovskite oxide. The powder is produced by solution combustion synthesis and deposited on metallic foams by the wash–coating method. Catalytic tests for the dry reforming of methane (DRM) reaction are carried out at 850 °C, 700 °C and 550 °C for an overall 50 h with CH4/CO2 = 1 and p = 1.3 bar at different gas hourly space velocities (GHSVs). The final goal is a proof–of–concept: a laboratory validation of an IIR–SOFC fed by biogas. The carbon amount on spent structured catalysts is evaluated by thermogravimetric analysis and microstructural/compositional investigation. Full article
(This article belongs to the Special Issue New Trends in Electrocatalysis for CO2 Conversion)
Show Figures

Graphical abstract

16 pages, 2867 KB  
Article
Effect of Re Addition on the Water–Gas Shift Activity of Ni Catalyst Supported by Mixed Oxide Materials for H2 Production
by Jessica Gina Lomonaco, Thanathon Sesuk, Sumittra Charojrochkul and Pannipa Tepamatr
Catalysts 2023, 13(6), 959; https://doi.org/10.3390/catal13060959 - 1 Jun 2023
Cited by 6 | Viewed by 3662
Abstract
Water–gas shift (WGS) reaction was performed over 5% Ni/CeO2, 5% Ni/Ce-5% Sm-O, 5% Ni/Ce-5% Gd-O, 1% Re 4% Ni/Ce-5% Sm-O and 1% Re 4% Ni/Ce-5% Gd-O catalysts to reduce CO concentration and produce extra hydrogen. CeO2 and M-doped ceria (M [...] Read more.
Water–gas shift (WGS) reaction was performed over 5% Ni/CeO2, 5% Ni/Ce-5% Sm-O, 5% Ni/Ce-5% Gd-O, 1% Re 4% Ni/Ce-5% Sm-O and 1% Re 4% Ni/Ce-5% Gd-O catalysts to reduce CO concentration and produce extra hydrogen. CeO2 and M-doped ceria (M = Sm and Gd) were prepared using a combustion method, and then nickel and rhenium were added onto the mixed oxide supports using an impregnation method. The influence of rhenium, samarium and gadolinium on the structural and redox properties of materials that have an effect on their water–gas shift activities was investigated. It was found that the addition of samarium and gadolinium into Ni/CeO2 enhances the surface area, reduces the crystallite size of CeO2, increases oxygen vacancy concentration and improves Ni dispersion on the CeO2 surface. Moreover, the addition of rhenium leads to an increase in the WGS activity of Ni/CeMO (M = Sm and Gd) catalysts. The results indicate that 1% Re 4% Ni/Ce-5% Sm-O presents the greatest WGS activity, with the maximum of 97% carbon monoxide conversion at 350 °C. An increase in the dispersion and surface area of metallic nickel in this catalyst results in the facilitation of the reactant CO adsorption. The result of X-ray absorption near-edge structure (XANES) analysis suggests that Sm and Re in 1% Re 4% Ni/Ce-5% Sm-O catalyst donate some electrons to CeO2, resulting in a decrease in the oxidation state of cerium. The occurrence of more Ce3+ at the CeO2 surface leads to higher oxygen vacancy, which alerts the redox process at the surface, thereby increasing the efficiency of the WGS reaction. Full article
(This article belongs to the Special Issue Advanced Catalysis for Green Fuel Synthesis and Energy Conversion)
Show Figures

Figure 1

15 pages, 2637 KB  
Article
Carbon Dioxide Valorization into Methane Using Samarium Oxide-Supported Monometallic and Bimetallic Catalysts
by Radwa A. El-Salamony, Ahmed S. Al-Fatesh, Kenit Acharya, Abdulaziz A. M. Abahussain, Abdulaziz Bagabas, Nadavala Siva Kumar, Ahmed A. Ibrahim, Wasim Ullah Khan and Rawesh Kumar
Catalysts 2023, 13(1), 113; https://doi.org/10.3390/catal13010113 - 4 Jan 2023
Cited by 16 | Viewed by 2912
Abstract
Samarium oxide (Sm2O3) is a versatile surface for CO2 and H2 interaction and conversion. Samarium oxide-supported Ni, samarium oxide-supported Co-Ni, and samarium oxide-supported Ru-Ni catalysts were tested for CO2 methanation and were characterized by X-ray diffraction, [...] Read more.
Samarium oxide (Sm2O3) is a versatile surface for CO2 and H2 interaction and conversion. Samarium oxide-supported Ni, samarium oxide-supported Co-Ni, and samarium oxide-supported Ru-Ni catalysts were tested for CO2 methanation and were characterized by X-ray diffraction, nitrogen physisorption, infrared spectroscopy, H2-temperature programmed reduction, and X-ray photoelectron spectroscopy. Limited H2 dissociation and widely available surface carbonate and formate species over 20 wt.% Ni, dispersed over Sm2O3, resulted in ~98% CH4 selectivity. The low selectivity for CO could be due to the reforming reaction between CH4 (methanation product) and CO2. Co-impregnation of cobalt with nickel over Sm2O3 had high surface adsorbed oxygen and higher CO selectivity. On the other hand, co-impregnation of ruthenium and nickel over Sm2O3 led to more than one catalytic active site, carbonate species, lack of formate species, and 94% CH4 selectivity. It indicated the following route of CH4 synthesis over Ru-Ni/Sm2O3; carbonate → unstable formate → CO → CH4. Full article
(This article belongs to the Special Issue Catalytic Reforming of Light Hydrocarbons)
Show Figures

Figure 1

Back to TopTop