Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Sm-doped BiFeO3 thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2203 KiB  
Article
Effects of Oxygen Pressure on the Microstructures and Nanomechanical Properties of Samarium-Doped BiFeO3 Thin Films
by Chih-Sheng Gao, Sheng-Rui Jian, Phuoc Huu Le, Wu-Ching Chou, Jenh-Yih Juang, Huang-Wei Chang and Chih-Ming Lin
Micromachines 2023, 14(10), 1879; https://doi.org/10.3390/mi14101879 - 29 Sep 2023
Viewed by 1683
Abstract
In this study, samarium (Sm-10at%)-doped BiFeO3 (SmBFO) thin films were grown on platinum-coated glass substrates using pulsed laser deposition (PLD) to unveil the correlation between the microstructures and nanomechanical properties of the films. The PLD-derived SmBFO thin films were prepared under various [...] Read more.
In this study, samarium (Sm-10at%)-doped BiFeO3 (SmBFO) thin films were grown on platinum-coated glass substrates using pulsed laser deposition (PLD) to unveil the correlation between the microstructures and nanomechanical properties of the films. The PLD-derived SmBFO thin films were prepared under various oxygen partial pressures (PO2) of 10, 30, and 50 mTorr at a substrate temperature of 600 °C. The scanning electron microscopy analyses revealed a surface morphology consisting of densely packed grains, although the size distribution varied with the PO2. X-ray diffraction results indicate that all SmBFO thin films are textured and preferentially oriented along the (110) crystallographic orientation. The crystallite sizes of the obtained SmBFO thin films calculated from the Scherrer and (Williamson–Hall) equations increased from 20 (33) nm to 25 (52) nm with increasing PO2. In addition, the nanomechanical properties (the hardness and Young’s modulus) of the SmBFO thin films were measured by using nanoindentation. The relationship between the hardness and crystalline size of SmBFO thin films appears to closely follow the Hall–Petch equation. In addition, the PO2 dependence of the film microstructure, the crystallite size, the hardness, and Young’s modulus of SmBFO thin films are discussed. Full article
(This article belongs to the Special Issue Thin Film Deposition: From Fundamental Research to Applications)
Show Figures

Figure 1

14 pages, 3826 KiB  
Article
Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films
by Yangyang Wang, Zhaoyang Li, Zhibiao Ma, Lingxu Wang, Xiaodong Guo, Yan Liu, Bingdong Yao, Fengqing Zhang and Luyi Zhu
Nanomaterials 2022, 12(1), 108; https://doi.org/10.3390/nano12010108 - 30 Dec 2021
Cited by 10 | Viewed by 2186
Abstract
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the [...] Read more.
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the crystal structure, phase composition, oxygen vacancy content, ferroelectric property, dielectric property, leakage property, leakage mechanism, and aging property of the BSFM films were systematically analyzed. X-ray diffraction (XRD) and Raman spectral analyses revealed that the sample had both R3c and Pnma phases. Through additional XRD fitting of the films, the content of the two phases of the sample was analyzed in detail, and it was found that the Pnma phase in the BSFMx = 0 film had the lowest abundance. X-ray photoelectron spectroscopy (XPS) analysis showed that the BSFMx = 0.04 film had the lowest oxygen vacancy content, which was conducive to a decrease in leakage current density and an improvement in dielectric properties. The diffraction peak of (110) exhibited the maximum intensity when the doping amount was 4 mol%, and the minimum leakage current density and a large remanent polarization intensity were also observed at room temperature (2Pr = 91.859 μC/cm2). By doping Sm at an appropriate amount, the leakage property of the BSFM films was reduced, the dielectric property was improved, and the aging process was delayed. The performance changes in the BSFM films were further explained from different perspectives, such as phase composition and oxygen vacancy content. Full article
Show Figures

Figure 1

Back to TopTop