Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Skyrme model of pions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 346 KB  
Review
Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds
by Fabrizio Canfora, Evangelo Delgado and Luis Urrutia
Symmetry 2024, 16(5), 518; https://doi.org/10.3390/sym16050518 - 25 Apr 2024
Cited by 2 | Viewed by 1306
Abstract
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken [...] Read more.
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken explicitly into account. The first approach (which is related to the generalization of the usual spherical hedgehog ansatz to situations without spherical symmetry at a finite Baryon density) allows for the construction of ordered arrays of Baryonic tubes and layers. When the minimal coupling of the Pions to the U(1) Maxwell gauge field is taken into account, one can show that the electromagnetic field generated by these inhomogeneous Baryonic condensates is of a force-free type (in which the electric and magnetic components have the same size). Thus, it is natural to wonder whether it is also possible to analytically describe magnetized hadronic condensates (namely, Hadronic distributions generating only a magnetic field). The idea of the second approach is to construct a novel BPS bound in the low-energy limit of QCD using the theory of the Hamilton–Jacobi equation. Such an approach allows us to derive a new topological bound which (unlike the usual one in the Skyrme model in terms of the Baryonic charge) can actually be saturated. The nicest example of this phenomenon is a BPS magnetized Baryonic layer. However, the topological charge appearing naturally in the BPS bound is a non-linear function of the Baryonic charge. Such an approach allows us to derive important physical quantities (which would be very difficult to compute with other methods), such as how much one should increase the magnetic flux in order to increase the Baryonic charge by one unit. The novel results of this work include an analysis of the extension of the Hamilton–Jacobi approach to the case in which Skyrme coupling is not negligible. We also discuss some relevant properties of the Dirac operator for quarks coupled to magnetized BPS layers. Full article
31 pages, 43899 KB  
Article
“Polymerization” of Bimerons in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy
by Natsuki Mukai and Andrey O. Leonov
Nanomaterials 2024, 14(6), 504; https://doi.org/10.3390/nano14060504 - 11 Mar 2024
Cited by 9 | Viewed by 2643
Abstract
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition [...] Read more.
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition to the vortices and antivortices, bimerons feature circular regions which are located behind the anti-vortices and bear the rotational sense opposite to the rotational sense chosen by the Dzyaloshinskii–Moriya interaction. In an attempt to eliminate these wrong-twist regions with an excess of positive energy density, bimerons assemble into chains, and as such exhibit an attracting interaction potential. As an alternative to chains, we demonstrate the existence of ring-shaped bimeron clusters of several varieties. In some rings, bimeron dipoles are oriented along the circle and swirl clockwise and/or counterclockwise (dubbed “roundabouts”). Moreover, a central meron encircled by the outer bimerons may possess either positive or negative polarity. In other rings, the bimeron dipoles point towards the center of a ring and consequently couple to the central meron (dubbed “crossings”). We point out that the ringlike solutions for baryons obtained within the Skyrme model of pions, although driven by the same tendency of the energy reduction, yield only one type of bimeron rings. The conditions of stability applied to the described bimeron rings are additionally extended to bimeron networks when bimerons fill the whole space of two-dimensional samples and exhibit combinations of rings and chains dispersed with different spatial density (dubbed bimeron “polymers”). In particular, bimeron crystals with hexagonal and the square bimeron orderings are possible when the sides of the unit cells represent chains of bimerons joined in intersections with three or four bimerons, respectively; otherwise, bimeron networks represent disordered bimeron structures. Moreover, we scrutinize the inter-transformations between hexagonal Skyrmion lattices and disordered bimeron polymers occuring via nucleation and mutual annihilation of merons within the cell boundaries. Our theory provides clear directions for experimental studies of bimeron orderings in different condensed-matter systems with quasi-two-dimensional geometries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

Back to TopTop