Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Serbian spruce

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1975 KB  
Article
Omorika Spruce as a Potential Substitute for Norway Spruce and Blue Spruce in Post-Pollution Reforestation for Industrial Use
by Aleš Zeidler, Václav Trojan, Stanislav Vacek, Zdeněk Vacek, Karol Tomczak, Jan Cukor, Urszula Strugarek, Vlastimil Borůvka, Arkadiusz Tomczak, Josef Gallo and Pavel Brabec
Forests 2026, 17(1), 109; https://doi.org/10.3390/f17010109 - 13 Jan 2026
Viewed by 273
Abstract
Norway spruce (Picea abies [L.] Karst.) plays a key role in European forestry as well as in the wood-processing industry. Identifying suitable alternative species has become increasingly important. In this study, we compared several spruce species originating from two sites in the [...] Read more.
Norway spruce (Picea abies [L.] Karst.) plays a key role in European forestry as well as in the wood-processing industry. Identifying suitable alternative species has become increasingly important. In this study, we compared several spruce species originating from two sites in the Ore Mountains (Krušné hory, 483–883 m a.s.l.), an area severely affected by an extensive air-pollution disaster (high SO2 concentrations) during the 1970s and 1980s. Norway spruce, Serbian spruce (Picea omorika [Panč.] Purk.) and blue spruce (Picea pungens Engelm.) were evaluated in terms of production potential, carbon sequestration relevant to climate-change mitigation, and selected physical wood properties (wood density and shrinkage). The greatest stem volume and corresponding carbon sequestration were recorded for P. omorika (0.191 m3; 75.5 kg), followed by P. abies (0.142 m3; 49.0 kg), while P. pungens showed significantly (p < 0,05) lower values (0.069 m3; 30.6 kg). In terms of wood properties, the highest wood-density values were obtained for P. omorika, together with P. abies, at both sites. P. pungens exhibited lower wood densities. In terms of shrinkage, the species displayed similar values. Overall, our results indicate that P. omorika is comparable to P. abies, and its wood could therefore serve as a suitable substitute for certain applications. Full article
Show Figures

Figure 1

10 pages, 1273 KB  
Article
Effects of Bioturbation by Earthworms on Litter Flammability in Young and Mature Afforested Stands
by Aneta Martinovská, Ondřej Mudrák and Jan Frouz
Fire 2025, 8(6), 225; https://doi.org/10.3390/fire8060225 - 6 Jun 2025
Viewed by 1209
Abstract
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal [...] Read more.
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal of litter by soil fauna, i.e., bioturbation, depends on both the dominant tree species and the successional stage of the forest stand. This research involved laboratory mesocosm experiments aiming to determine the effects of litter quality and earthworm activity on the flammability of the forest floor material at different successional ages. The mesocosms simulated the planting of four tree species (the broadleaf species Alnus glutinosa (L.) Gaertn. (Black alder) and Quercus robur L. (English oak) and the conifers Picea omorika (Pančić) Purk. (Serbian spruce) and Pinus nigra J.F. Arnold (Austrian pine)) at a reclamation site near Sokolov (NW Czechia). The mesocosms contained litter from these different tree species, placed directly on overburden soil (immature soil) or on well-developed Oe and A layers (mature soil), inoculated or not inoculated with earthworms, and incubated for 4 months. The surface material in the mesocosms was then subjected to simulated burn events, and the fire path and soil temperature changes were recorded. Burn testing showed that litter type (tree species) and soil maturity significantly influenced flammability. Pine had longer burning times and burning paths and higher post-burn temperatures than those of the other tree species. The immature soil with earthworms had significantly shorter burning times, whereas in the mature soil, earthworms had no effect. We conclude that earthworms have a significant, immediate effect on the litter flammability of immature soils. Full article
Show Figures

Figure 1

15 pages, 2524 KB  
Article
Morpho-Anatomical Properties and Terpene Composition of Picea Omorika (Pančić) Purk. Needles from Bosnia and Herzegovina
by Biljana M. Nikolić, Zorica S. Mitić, Dalibor Ballian, Marina M. Todosijević, Jelena S. Nikolić, Stefan Ivanović and Vele V. Tešević
Forests 2025, 16(5), 791; https://doi.org/10.3390/f16050791 - 8 May 2025
Viewed by 1073
Abstract
Picea omorika (Pančić) Purk., (Serbian spruce) is a relic, endemic, and vulnerable conifer that remains insufficiently studied to date. To the best of our knowledge, this is the first report on the morpho-anatomical and phytochemical diversity of needles from three populations in Bosnia [...] Read more.
Picea omorika (Pančić) Purk., (Serbian spruce) is a relic, endemic, and vulnerable conifer that remains insufficiently studied to date. To the best of our knowledge, this is the first report on the morpho-anatomical and phytochemical diversity of needles from three populations in Bosnia and Herzegovina. The length of two-year-old needles was measured with a digital caliper. The next six properties were measured based on cross-sections of the needles using a light microscope. An analysis of volatile compounds was carried out using gas chromatography coupled with mass spectrometry (GC-MS) and flame ionization detection (GC-FID). The highest values of needle traits were found in the Viogor population, with the lowest in the Tisovljak population, which was statistically confirmed. There was also a significant difference between needles from Bosnia and Herzegovina and those from Serbia. Bornyl acetate, camphene, limonene, and α-pinene were identified as the major terpene compounds. Multivariate analyses also suggested a tendency toward the separation of the Tisovljak population. A statistical comparison of three Bosnian and Herzegovinian and four Serbian populations (previously studied and published) revealed two distinct groups: (1) three Bosnian populations and the Vranjak population from Serbia, and (2) three populations from Serbia—Štula, Zmajevački Potok, and Mileševka Canyon. The general conclusions are that divergence in needle morpho-anatomy aligns with divergence in needle chemistry and that Bosnian and Herzegovinian populations are distinct from nearly all Serbian populations. Full article
(This article belongs to the Special Issue Specialized Metabolites and Structure of Woody Plants)
Show Figures

Figure 1

14 pages, 2668 KB  
Article
The Possibility of Using Non-Native Spruces for Norway Spruce Wood Replacement—A Case Study from the Czech Republic
by Aleš Zeidler, Vlastimil Borůvka, Pavel Brabec, Karol Tomczak, Jakub Bedřich, Zdeněk Vacek, Jan Cukor and Stanislav Vacek
Forests 2024, 15(2), 255; https://doi.org/10.3390/f15020255 - 29 Jan 2024
Cited by 8 | Viewed by 2937
Abstract
European forests are facing ongoing climate change, and certain tree species are being critically impacted. The Norway spruce (Picea abies (L.) Karst.) is one of the most sensitive species to climate fluctuations, a fact manifesting itself through massive dieback resulting in a [...] Read more.
European forests are facing ongoing climate change, and certain tree species are being critically impacted. The Norway spruce (Picea abies (L.) Karst.) is one of the most sensitive species to climate fluctuations, a fact manifesting itself through massive dieback resulting in a lack of high-quality timber and timber market destabilization. Therefore, the possibility of wood substitution with non-native spruce species, namely, black spruce (Picea mariana (Mill.) Britt., Sterns, et Poggenburg), Serbian spruce (Picea omorika (Pančić) Purk.), and blue spruce (Picea pungens Engelm.), under the specific conditions of forest reclamations with great potential for future afforestation was tested. Wood density, modulus of rupture, and modulus of elasticity were used to evaluate wood quality in comparison with native Norway spruce. The results confirmed that only the Serbian spruce reached the quality of Norway spruce and even exceeded it in terms of wood density (P. omorika 525 kg·m−3 vs. P. abies 517 kg·m−3) and exhibited comparable parameters with regard to other properties. The density of the other species was significantly lower for blue spruce (476 kg·m−3) and black spruce (468 kg·m−3). A similar trend was found for other wood parameters, which confirmed that Norway spruce quality was nearly comparable with that of Serbian spruce. On the other hand, black spruce and blue spruce did not match the quality of Norway spruce. The within-stem variability of the properties tested was low for all the spruce species examined. In conclusion, the Serbian spruce showed great potential for future usage in forest management and is one of the possible methods of Norway spruce replacement in times of unprecedented forest disturbances under the effects of global climate change. Full article
Show Figures

Figure 1

29 pages, 4950 KB  
Review
Carpathian Forests: Past and Recent Developments
by Dariia Kholiavchuk, Wolfgang Gurgiser and Stefan Mayr
Forests 2024, 15(1), 65; https://doi.org/10.3390/f15010065 - 28 Dec 2023
Cited by 18 | Viewed by 8421
Abstract
Forests of the Carpathians are of increasing research interest, as they cover a large area (>9 Mha) within European forests and are influenced by diverse environmental conditions and contrasting historical developments. We reviewed 251 papers dealing with Carpathian forests, their history, and future [...] Read more.
Forests of the Carpathians are of increasing research interest, as they cover a large area (>9 Mha) within European forests and are influenced by diverse environmental conditions and contrasting historical developments. We reviewed 251 papers dealing with Carpathian forests, their history, and future perspectives. Over 70% of articles and reviews appeared in the last ten years, and 80% refer to the Western and Eastern Carpathians, while the Serbian Carpathians remain a gap in this research field. Forest expansion and species changes have occurred since Holocene deglaciation, influenced by timber use, settlements, cropland development, and, since the Bronze Age, pasture activities. At higher elevations, early conifer successors have been increasingly replaced by Norway spruce (Picea abies), silver fir (Abies alba), European beech (Fagus sylvatica), and hornbeam (Carpinus betulus), while oaks have been present in the Carpathian foothills throughout the whole of history. In the 19th and 20th centuries, Norway spruce afforestation was favored, and timber use peaked. Recent transitions from agriculture to forest land use have led to a further increase in forest cover (+1 to +14% in different countries), though past forest management practices and recent environmental changes have impaired forest vitality in many regions; climate warming already causes shifts in treelines and species distributions, and it triggers pest outbreaks and diseases and affects tree–water relations. The risk of forest damage is the highest in monodominant Norway spruce forests, which often experience dieback after cascade disturbances. European beech forests are more resilient unless affected by summer droughts. In the future, increasing dominance of broadleaves within Carpathian forests and forest management based on a mix of intensive management and ecological silviculture are expected. Maintenance and promotion of silver fir and mixed European beech forests should be encouraged with respect to forest stability, biodiversity, and economic sustainability. As supported by the Carpathian Convention and related institutions and initiatives, connectivity, management, and stakeholder cooperation across administrative borders will be crucial for the future adaptive potential of Carpathian forests. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 3572 KB  
Article
Impact of Mixing on the Structural Diversity of Serbian Spruce and Macedonian Pine Endemic to Relict Forest Communities in the Balkan Peninsula
by Aleksandar Popović, Damjan Pantić, Milan Medarević, Biljana Šljukić and Snežana Obradović
Forests 2021, 12(8), 1095; https://doi.org/10.3390/f12081095 - 16 Aug 2021
Cited by 3 | Viewed by 2700
Abstract
The aim of this paper is to analyze the effect of different degrees of mixing on the diversity structure in stands left to spontaneous development. The research included two communities of species endemic to the Balkan Peninsula—the Serbian spruce (Picea omorika Pančić [...] Read more.
The aim of this paper is to analyze the effect of different degrees of mixing on the diversity structure in stands left to spontaneous development. The research included two communities of species endemic to the Balkan Peninsula—the Serbian spruce (Picea omorika Pančić Purk.) and the Macedonian pine (Pinus peuce Griseb). Data from eight sample plots were used in the research. The changes in diameter and height structure, spatial arrangement of trees, and diameter differentiation were analyzed. The analyzed parameters of structural diversity show relatively low to moderate values. Results showed an increase in mixing was reflected in the width and shape of distributions. A spatial analysis of stands with a higher degree of mixing showed a tendency towards a random to regular distribution of individuals, in contrast to stands with a lower degree of mixing which showed a tendency towards a clump distribution. The pronounced species’ dimensional and spatial diversity confirms their importance to the condition of modern forest management. Significant differences in the change of structure are shown by stands with a share of admixed species of above 20% by volume. The obtained results refer to stands left to spontaneous development, suggesting than an active research and management approach must be assumed to realize the goal of protecting rare forest ecosystems. Full article
(This article belongs to the Special Issue Patterns of Tree Species Diversity and Forest Structure)
Show Figures

Figure 1

Back to TopTop