Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Senonian calciturbidites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5626 KiB  
Article
Sedimentary and Diagenetic Controls across the Cretaceous—Paleogene Transition: New Paleoenvironmental Insights of the External Ionian Zone from the Pelagic Carbonates of the Gardiki Section (Epirus, Western Greece)
by Leonidas Moforis, George Kontakiotis, Hammad Tariq Janjuhah, Alexandra Zambetakis-Lekkas, Dimitrios Galanakis, Panagiotis Paschos, Christos Kanellopoulos, Sotirios Sboras, Evangelia Besiou, Vasileios Karakitsios and Assimina Antonarakou
J. Mar. Sci. Eng. 2022, 10(12), 1948; https://doi.org/10.3390/jmse10121948 - 8 Dec 2022
Cited by 13 | Viewed by 3700
Abstract
Field investigation, biostratigraphic, paleoecological, and sedimentary microfacies analyses, as well as diagenetic processes characterization, were carried out in the Epirus region (Western Ionian Basin) to define the depositional environments and further decipher the diagenetic history of the Late Cretaceous–Early Paleocene carbonate succession in [...] Read more.
Field investigation, biostratigraphic, paleoecological, and sedimentary microfacies analyses, as well as diagenetic processes characterization, were carried out in the Epirus region (Western Ionian Basin) to define the depositional environments and further decipher the diagenetic history of the Late Cretaceous–Early Paleocene carbonate succession in western continental Greece. Planktonic foraminiferal biostratigraphy of the studied carbonates revealed that the investigated part of the Gardiki section covers the Cretaceous–Paleogene (K-Pg) transition, partly reflecting the Senonian limestone and calciturbidites formations of the Ionian zone stratigraphy. Litho-and bio-facies analyses allowed for the recognition of three distinct depositional facies: (a) the latest Maastrichtian pelagic biomicrite mudstone with in situ planktonic foraminifera, radiolarians, and filaments, (b) a pelagic biomicrite packstone with abundant planktonic foraminifera at the K-Pg boundary, and (c) an early Paleocene pelagic biomicrite wackestone with veins, micritized radiolarians, and mixed planktonic fauna in terms of in situ and reworked (aberrant or broken) planktonic foraminifera. The documented sedimentary facies characterize a relatively low to medium energy deep environment, representing the transition from the deep basin to the deep shelf and the toe of the slope crossing the K-Pg boundary. Micropaleontological and paleoecological analyses of the samples demonstrate that primary productivity collapse is a key proximate cause of this extinction event. Additional petrographic analyses showed that the petrophysical behavior and reservoir characteristics of the study deposits are controlled by the depositional environment (marine, meteoric, and burial diagenetic) and further influenced by diagenetic processes such as micritization, compaction, cementation, dissolution, and fracturing. Full article
(This article belongs to the Special Issue Recent Advances in Sedimentology)
Show Figures

Figure 1

27 pages, 8720 KiB  
Article
Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece)
by George Kontakiotis, Leonidas Moforis, Vasileios Karakitsios and Assimina Antonarakou
J. Mar. Sci. Eng. 2020, 8(9), 706; https://doi.org/10.3390/jmse8090706 - 11 Sep 2020
Cited by 34 | Viewed by 5768
Abstract
Sedimentological, micropalaeontological, and marine geological results from the Early Jurassic to Eocene carbonate formations of the Ionian zone, from six localities of Epirus, provide new insights into the basin palaeogeographic evolution and better correlation with coeval analogous tectono-stratigraphic successions along the southern margin [...] Read more.
Sedimentological, micropalaeontological, and marine geological results from the Early Jurassic to Eocene carbonate formations of the Ionian zone, from six localities of Epirus, provide new insights into the basin palaeogeographic evolution and better correlation with coeval analogous tectono-stratigraphic successions along the southern margin of the Neo-Tethys Ocean. Facies analysis allowed the recognition of several microfacies types and their depositional characteristics. During the Early Jurassic, autochthonous carbonates (Pantokrator Limestones) were deposited in shallow-water environment. The overlying (hemi)pelagic Siniais or their lateral equivalent Louros Limestones were deposited to the basin borders and mark the general deepening of the Ionian domain. During Toarcian to Tithonian, the Ionian Basin was characterized by an internal differentiation in small sub-basins with half-graben geometry presenting abrupt thickness and facies changes. The deeper parts were characterized by continuous sedimentation, while the elevated parts were marked by unconformities. The Early Cretaceous marks the homogenization of sedimentation by the deposition of the pelagic Vigla Limestones all over the Ionian zone. The transition from the Early to Late Cretaceous records a significant carbonate diversification in terms of biota assemblages, and related mineralogy due to intense tectonic activity in the region. From Late Cretaceous to Paleogene, allochthonous carbonates were transported to the outer shelf by turbidity currents (calciturbidites) and/or debris flows (limestones with breccia) formed by the gravitational collapse of the platform margin. Additional porosity and bulk density measurements showed that petrophysical behavior of these carbonates are controlled by the depositional environment and further influenced by diagenetic processes. The partly dolomitized neritic Jurassic carbonates, but mainly the Senonian calciturbidites and the microbrecciated Paleocene/Eocene limestones display the higher average porosity values, and therefore present enhanced carbonate reservoir quality. Full article
(This article belongs to the Special Issue Climate Change and Marine Geological Dynamics)
Show Figures

Figure 1

Back to TopTop