Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = SRM-based fracturing model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5030 KB  
Article
Strength Prediction Model for Cohesive Soil–Rock Mixture with Rock Content
by Yang Sun, Jianyong Xin, Junchao He, Junping Yu, Haibin Ding and Yifan Hu
Appl. Sci. 2025, 15(2), 843; https://doi.org/10.3390/app15020843 - 16 Jan 2025
Viewed by 977
Abstract
Fault fracture zones, characterized by high weathering, low strength, and a high degree of fragmentation, are common adverse geological phenomena encountered in tunneling projects. This paper performed a series of large-scale triaxial compression tests on the cohesive soil–rock mixture (SRM) samples with dimensions [...] Read more.
Fault fracture zones, characterized by high weathering, low strength, and a high degree of fragmentation, are common adverse geological phenomena encountered in tunneling projects. This paper performed a series of large-scale triaxial compression tests on the cohesive soil–rock mixture (SRM) samples with dimensions of 500 mm × 1000 mm to investigate the influence of rock content PBV (20, 40, and 60% by volume), rock orientation angle α, and confining pressure on their macro-mechanical properties. Furthermore, a triaxial numerical model, which takes into account PBV and α, was constructed by means of PFC3D to investigate the evolution of the mechanical properties of the cohesive SRM. The results indicated that (1) the influence of the α is significant at high confining pressures. For the sample with an α of 0°, shear failure was inhibited, and the rock blocks tended to break more easily, while the samples with an α of 30° and 60° exhibited fewer fragmentations. (2) PBV significantly affected the shear behaviors of the cohesive SRM. The peak deviatoric stress of the sample with an α of 0° was minimized at lower PBV (<20%), while both the deformation modulus and peak deviatoric stress were larger at high PBV (>60%). Based on these findings, an equation correlating shear strength and PBV was proposed under consistent α and matrix strength conditions. This equation effectively predicts the shear strength of the cohesive SRM with different PBV values. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

36 pages, 18495 KB  
Article
Size-Dependent Mechanical Properties and Excavation Responses of Basalt with Hidden Cracks at Baihetan Hydropower Station through DFN–FDEM Modeling
by Changdong Ding, Zhenjiang Liu, Xiancheng Mei and Shaoming Ouyang
Appl. Sci. 2024, 14(19), 9069; https://doi.org/10.3390/app14199069 - 8 Oct 2024
Cited by 1 | Viewed by 1644
Abstract
Basalt is an important geotechnical material for engineering construction in Southwest China. However, it has complicated structural features due to its special origin, particularly the widespread occurrence of hidden cracks. Such discontinuities significantly affect the mechanical properties and engineering stability of basalt, and [...] Read more.
Basalt is an important geotechnical material for engineering construction in Southwest China. However, it has complicated structural features due to its special origin, particularly the widespread occurrence of hidden cracks. Such discontinuities significantly affect the mechanical properties and engineering stability of basalt, and related research is lacking and unsystematic. In this work, taking the underground caverns in the Baihetan Hydropower Station as the engineering background, the size-dependent mechanical behaviors and excavation responses of basalt with hidden cracks were systematically explored based on a synthetic rock mass (SRM) model combining the finite-discrete element method (FDEM) and discrete fracture network (DFN) method. The results showed that: (1) The DFN–FDEM model generated based on the statistical characteristics of the geometric parameters of hidden cracks can consider the real structural characteristics of basalt, whereby the mechanical behaviors found in laboratory tests and at the engineering site could be exactly reproduced. (2) The representative elementary volume (REV) size of basalt blocks containing hidden cracks was 0.5 m, and the mechanical properties obtained at this size were considered equivalent continuum properties. With an increase in the sample dimensions, the mechanical properties reflected in the stress–strain curves changed from elastic–brittle to elastic–plastic or ductile, the strength failure criterion changed from linear to nonlinear, and the failure modes changed from fragmentation failure to local structure-controlled failure and then to splitting failure. (3) The surrounding rock mass near the excavation face of underground caverns typically showed a spalling failure mode, mainly affected by the complex structural characteristics and high in situ stresses, i.e., a tensile fracture mechanism characterized by stress–structure coupling. The research findings not only shed new light on the failure mechanisms and size-dependent mechanical behaviors of hard brittle rocks represented by basalt but also further enrich the basic theory and technical methods for multi-scale analyses in geotechnical engineering, which could provide a reference for the design optimization, construction scheme formulation, and disaster prevention of deep engineering projects. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

34 pages, 9562 KB  
Article
Evaluating the Accuracy of Bonded Block Models for Prediction of Rockmass Analog Mechanical Behavior
by Isabella West, Gabriel Walton and Sankhaneel Sinha
Materials 2024, 17(1), 88; https://doi.org/10.3390/ma17010088 - 23 Dec 2023
Cited by 3 | Viewed by 1495
Abstract
Large-scale rock formations, referred to as “rockmasses”, consist of intact rock separated by pre-existing discontinuities (i.e., joints). The mechanical behavior of rockmasses is difficult to directly test in the laboratory due to the required specimen scale. Instead, Synthetic Rockmass Modeling (SRM) is often [...] Read more.
Large-scale rock formations, referred to as “rockmasses”, consist of intact rock separated by pre-existing discontinuities (i.e., joints). The mechanical behavior of rockmasses is difficult to directly test in the laboratory due to the required specimen scale. Instead, Synthetic Rockmass Modeling (SRM) is often used to simulate field-scale rockmass behavior. SRM requires a calibrated discrete element model (DEM) of intact rock combined with a Discrete Fracture Network (DFN). While the SRM concept has been informally determined to provide reasonable results based on practitioner experience, detailed and peer-reviewed validation is lacking. The goal of this study was to evaluate the predictive capabilities of the SRM method. Previously available data on intact and rockmass analog laboratory specimens of Blanco Mera granite containing DFNs with two joint sets were used as a basis for the SRM created in this study. Specifically, the intact DEM was a Bonded Block Model (BBM), generated to match the grain structure and composition of Blanco Mera granite and the model’s input parameters were calibrated so that the behavior of the BBM matched that of the intact laboratory specimens. The predictive capabilities of the model were evaluated by recreating the DFN from the jointed laboratory specimens within the intact BBM and comparing the behavior of the jointed models back to the jointed laboratory specimens, which has not been previously studied in the literature. The BBM was found capable of approximately predicting the behavior of rockmass analog specimens containing a pre-existing DFN without further calibration, which shows potential for the use of SRM in both industry and academia. Specifically, the BBM predicted the strength, dilatancy, and microfracturing behavior of the jointed laboratory specimens. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

20 pages, 5752 KB  
Article
Upscaling the Mechanical Properties of a Fractured Rock Mass Using the Lattice-Spring-Based Synthetic Rock Mass (LS-SRM) Modeling Approach—Comparison of Discontinuum, Continuum and Empirical Approaches
by Dominik Gottron and Andreas Henk
Geosciences 2022, 12(9), 343; https://doi.org/10.3390/geosciences12090343 - 15 Sep 2022
Cited by 5 | Viewed by 2941
Abstract
A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic [...] Read more.
A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic sandstone samples from a quarry in Germany. Subsequently, the intact rock properties were upscaled to an element volume representative for geotechnical applications, recalibrated and combined with a Discrete Fracture Network (DFN) model. The resulting fractured rock mass properties are compared to predictions from empirical relationships based on rock mass classification schemes and the DFN-Oda-Geomechanics approach. Modeling results reveal a significant reduction in the strength of the fractured rock mass compared to the intact rock, showing a high agreement with empirically calculated values. Results for the deformation modulus reveal a significant reduction induced by the fracture network and a good agreement compared to the results obtained by other approaches. It is shown that the LS-SRM allows analyzing the complex mechanical behavior during failure of rock masses, including crack initiation, propagation and coalescence. The resulting rock mass properties are key parameters for a wide range of geotechnical applications and can be used for large-scale numerical modeling as well. Full article
(This article belongs to the Collection New Advances in Geotechnical Engineering)
Show Figures

Figure 1

31 pages, 24662 KB  
Article
A Preliminary Investigation on the Role of Brittle Fracture in the Kinematics of the 2014 San Leo Landslide
by Davide Donati, Doug Stead, Davide Elmo and Lisa Borgatti
Geosciences 2019, 9(6), 256; https://doi.org/10.3390/geosciences9060256 - 7 Jun 2019
Cited by 24 | Viewed by 5713
Abstract
The stability of high rock slopes is largely controlled by the location and orientation of geological features, such as faults, folds, joints, and bedding planes, which can induce structurally controlled slope instability. Under certain conditions, slope kinematics may vary with time, as propagation [...] Read more.
The stability of high rock slopes is largely controlled by the location and orientation of geological features, such as faults, folds, joints, and bedding planes, which can induce structurally controlled slope instability. Under certain conditions, slope kinematics may vary with time, as propagation of existing fractures due to brittle failure may allow development of fully persistent release surfaces. In this paper, the progressive accumulation of brittle damage that occurred prior to and during the 2014 San Leo landslide (northern Italy) is investigated using a synthetic rock mass (SRM) approach. Mapping of brittle fractures, rock bridge failures, and major structures is undertaken using terrestrial laser scanning, photogrammetry, and high-resolution photography. Numerical analyses are conducted to investigate the role of intact rock fracturing on the evolution of kinematic freedom using the two-dimensional Finite-discrete element method (FDEM) code Elfen, and the three-dimensional lattice-spring scheme code Slope Model. Numerical analyses show that the gradual erosion of clay-rich material below the base of the plateau drives the brittle propagation of fractures within the rock mass, until a fully persistent, subvertical rupture surface form, causing toppling of fault-bounded rock columns. This study clearly highlights the potential role of intact rock fracturing on the slope kinematics, and the interaction between intact rock strength, structural geology, and slope morphology. Full article
(This article belongs to the Special Issue Mountain Landslides: Monitoring, Modeling, and Mitigation)
Show Figures

Figure 1

33 pages, 48212 KB  
Article
Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation
by Zhaohui Chong, Xuehua Li, Xiangyu Chen, Ji Zhang and Jingzheng Lu
Energies 2017, 10(7), 914; https://doi.org/10.3390/en10070914 - 3 Jul 2017
Cited by 27 | Viewed by 5548
Abstract
Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and [...] Read more.
Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN) caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM) method to investigate the effects of natural fracture (NF) density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF) in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR) and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV), concentration area of injection pressure (CAIP), and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in fractured rock formations. Full article
Show Figures

Figure 1

Back to TopTop