Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = SOLT calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2776 KiB  
Article
The Design and Fabrication of a MEMS Electronic Calibration Chip
by Qiannan Wu, Yu Chen, Qianlong Cao, Jingchao Zhao, Shanshan Wang, Junqiang Wang and Mengwei Li
Micromachines 2022, 13(12), 2139; https://doi.org/10.3390/mi13122139 - 3 Dec 2022
Viewed by 2056
Abstract
During the test of microelectromechanical system (MEMS) devices, calibration of test cables, loads and test instruments is an indispensable step. Calibration kits with high accuracy, great operability and small loss can reduce the systematic errors in the test process to the greatest extent [...] Read more.
During the test of microelectromechanical system (MEMS) devices, calibration of test cables, loads and test instruments is an indispensable step. Calibration kits with high accuracy, great operability and small loss can reduce the systematic errors in the test process to the greatest extent and improve the measurement accuracy. Aiming at the issues of the conventional discrete calibration piece unit, which presents cumbersome calibration steps and large system loss, an integrated electronic calibration chip based on frequency microelectromechanical system (RF MEMS) switches is designed and fabricated. The short-open-load-through (SOLT) calibration states can be completed on a single chip, step by step, by adjusting the on–off state of the RF MEMS switches. The simulation results show that the operating frequency of the electronic calibration piece covers the range of DC~26.5 GHz, the insertion loss in through (thru) state is less than 0.2 dB, the return loss is less than 1.0 dB in short-circuit and open-circuit states, the return loss under load-circuit state is less than 20 dB and its size is only 2.748 mm × 2.2 mm × 0.5 mm. This novel calibration chip design has certain esteem for advancing calibration exactness and effectiveness. Full article
(This article belongs to the Special Issue NEMS/MEMS Devices and Applications)
Show Figures

Figure 1

12 pages, 2966 KiB  
Article
Design and Characterization of a Microwave Transducer for Gas Sensing Applications
by Giovanni Gugliandolo, Krishna Naishadham, Giovanni Crupi and Nicola Donato
Chemosensors 2022, 10(4), 127; https://doi.org/10.3390/chemosensors10040127 - 29 Mar 2022
Cited by 11 | Viewed by 3297
Abstract
Gas sensors have wide applications in several fields, spanning diverse areas such as environmental monitoring, healthcare, defense, and the evaluation of personal and occupational exposure to hazardous chemicals. Different typologies of gas sensors have been proposed over the years, such as optical, electrochemical, [...] Read more.
Gas sensors have wide applications in several fields, spanning diverse areas such as environmental monitoring, healthcare, defense, and the evaluation of personal and occupational exposure to hazardous chemicals. Different typologies of gas sensors have been proposed over the years, such as optical, electrochemical, and metal oxide gas sensors. In this paper, a relatively new typology of gas sensors is explored: the microwave gas sensor. It consists of a combination of a microwave transducer with a nanostructured sensing material deposited on an interdigitated capacitor (IDC). The device is designed and fabricated on a Rogers substrate (RO4003C) using microstrip technology, and investigated as a microwave transducer over the frequency range from 1 GHz to 6 GHz by measuring the scattering (S) parameters in response to gas adsorption and desorption. The sensing material is based on a nano-powder of barium titanate oxalate with a coating of urea (BaTiO(C2O4)2/CO(NH2)2). It is deposited on the IDC surface by drop coating, thus creating a sensing film. The developed prototype has been tested toward different oxygen (O2) concentrations and exhibits a sensitivity of 28 kHz/%O2. Special attention has been devoted to the measurement process. Besides the canonical short-open-load-thru (SOLT) calibration of the measured S-parameters, a thru-reflect-line (TRL) calibration has been performed in order to get rid of the parasitic electromagnetic (EM) contributions of the board connectors and the feedlines, thus moving the measurement reference planes to the edges of the IDC. Full article
(This article belongs to the Special Issue Gas Sensors: Simulation, Modeling, and Characterization)
Show Figures

Figure 1

15 pages, 5308 KiB  
Article
High-Frequency Magnetoimpedance (MI) and Stress-MI in Amorphous Microwires with Different Anisotropies
by Junaid Alam, Makhsudsho Nematov, Nikolay Yudanov, Svetlana Podgornaya and Larissa Panina
Nanomaterials 2021, 11(5), 1208; https://doi.org/10.3390/nano11051208 - 2 May 2021
Cited by 13 | Viewed by 3944
Abstract
Magnetoimpedance (MI) in Co-based microwires with an amorphous and partially crystalline state was investigated at elevated frequencies (up to several GHz), with particular attention paid to the influence of tensile stress on the MI behavior, which is called stress-MI. Two mechanisms of MI [...] Read more.
Magnetoimpedance (MI) in Co-based microwires with an amorphous and partially crystalline state was investigated at elevated frequencies (up to several GHz), with particular attention paid to the influence of tensile stress on the MI behavior, which is called stress-MI. Two mechanisms of MI sensitivity related to the DC magnetization re-orientation and AC permeability dispersion were discussed. Remarkable sensitivity of impedance changes with respect to applied tensile stress at GHz frequencies was obtained in partially crystalline wires subjected to current annealing. Increasing the annealing current enhanced the axial easy anisotropy of a magnetoelastic origin, which made it possible to increase the frequency of large stress-MI: for 90mA-annealed wire, the impedance at 2 GHz increased by about 300% when a stress of 450 MPa was applied. Potential applications included sensing elements in stretchable substrates for flexible electronics, wireless sensors, and tunable smart materials. For reliable microwave measurements, an improved SOLT (short-open-load-thru) calibration technique was developed that required specially designed strip cells as wire holders. The method made it possible to precisely measure the impedance characteristics of individual wires, which can be further employed to characterize the microwave scattering at wire inclusions used as composites fillers. Full article
(This article belongs to the Special Issue Novel Magnetic Properties in Curved Geometries)
Show Figures

Figure 1

Back to TopTop