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Abstract: During the test of microelectromechanical system (MEMS) devices, calibration of test
cables, loads and test instruments is an indispensable step. Calibration kits with high accuracy, great
operability and small loss can reduce the systematic errors in the test process to the greatest extent and
improve the measurement accuracy. Aiming at the issues of the conventional discrete calibration piece
unit, which presents cumbersome calibration steps and large system loss, an integrated electronic
calibration chip based on frequency microelectromechanical system (RF MEMS) switches is designed
and fabricated. The short-open-load-through (SOLT) calibration states can be completed on a single
chip, step by step, by adjusting the on–off state of the RF MEMS switches. The simulation results
show that the operating frequency of the electronic calibration piece covers the range of DC~26.5 GHz,
the insertion loss in through (thru) state is less than 0.2 dB, the return loss is less than 1.0 dB in
short-circuit and open-circuit states, the return loss under load-circuit state is less than 20 dB and its
size is only 2.748 mm × 2.2 mm × 0.5 mm. This novel calibration chip design has certain esteem for
advancing calibration exactness and effectiveness.

Keywords: calibration; RF MEMS; integration; TaN Resistors; switches

1. Introduction

With the development of technologies such as microwave communication and the
Internet of Things, there are more and more demands for high-performance RF microwave
devices and services, such as broadband and low power consumption [1]. The market
application value of RF MEMS devices has been greatly improved. However, during the test
of MEMS device parameters, microwave test cables and loads had problems such as large
loss, and instability, which directly lead to lower test accuracy. Therefore, it is necessary to
calibrate test cables, loads and instruments before testing to minimize systematic errors
during testing and improve measurement accuracy [2].

With the development of RF devices towards high frequency and integration [3], the
test of devices’ S-parameters, power, gain, noise and other parameters is more reliant
on the calibration of the on-chip S-parameters. Domestic and foreign scientific research
institutions have carried out a lot of research on device testing. With the development of
device on-chip testing [4], in 2014, the Fourth Institute of Electronics developed a ceramic-
based DC~40 GHz calibration chip, which can meet the chip calibration requirements
based on the SOLT calibration principle [5]. Although the frequency band of the calibration
chip is wide, the calibration unit is discrete, and the testing procedure is tedious. In 2017,
the Institute of Electronic Standardization designed a discrete calibration sample based
on GaAs substrate, which can meet the on-chip testing requirements of GaAs devices [6].
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In 2021, North Central University designed a RF MEMS calibration component based on
the SOLT calibration principle, which meets the calibration requirements for chip-on-chip
testing in the DC~20 GHz range [7]. The quasi chip integrates the RF MEMS switch with
low insertion loss and high isolation performance, which has a certain significance for
improving calibration accuracy and reducing test complexity. However, the precision chip
is slightly lower in frequency and larger in size.

Aiming at the problems of discrete units and low work efficiency in traditional cali-
bration samples [8–10], this paper designs an integrated calibration sample based on RF
MEMS switches, which can be used for the calibration of on-chip test systems of RF and
microwave devices to ensure the accuracy of device performance calibration and improve
calibration [11–13]. Work efficiency is of great significance to the automation of the on-chip
calibration system.

2. Structural Design of Calibration Sheet

The calibration chip is designed based on the SOLT calibration principle, and it
employs RF MEMS switches to realize the integration of four calibration states: through,
load, open circuit and short circuit. The currently used calibration sample is shown in
Figure 1a. Each calibration unit adopts a discrete design. During calibration, it is necessary
to move the probe several times for measurement.
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Figure 1. Calibration element structure diagram: (a) Discrete calibration unit; (b) structure of
integrated electronic calibration chip based on RF MEMS switches.

The device structure of the designed integrated electronic calibration chip is shown
in Figure 1b in this paper. The chip presents a symmetrical structure, and S1–S5 represent
RF MEMS switches. Structural design parameters are shown in Table 1. The device uses a
coplanar waveguide as a signal transmission line and a tantalum nitride thin-film resistor
as a load resistor [14,15]. By applying a DC control voltage, the state of the RF MEMS
switch is controlled to achieve switching between different calibration states [16]. When
calibrating port 1, the signal is grounded by controlling the switch S1 to realize the short-
circuit calibration state. An open calibration state is achieved when all switches are open.
When switches S2 and S3 are controlled so that port 1 is connected to the load resistance,
the load calibration state is realized. When switches S2 and S4 are controlled, a through
calibration state between port 1 and port 2 is achieved. Similarly, the calibration process
of port 2 is the same as above. The corresponding switch mode of the calibration state is
described in Table 2.

The device uses ANSYS HFSS software for numerical simulation analysis. When port
1 is calibrated in the range of DC~26.5 GHz, the simulation results of different states are
shown in Figure 2 below. As can be seen in the Figure, when the device is in open circuit and
short circuit, its return loss is less than 3.5 dB, and the microwave signal is in a state of total
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reflection. When the device is in the load calibration state, its return loss is less than 20 dB,
and the signal is basically absorbed by the load. In the direct-through calibration phase, the
signal is transmitted at low loss through the calibration piece, realizing the direct connection
of the two test ports, and the insertion loss S21 is less than 0.20 dB and close to 0 dB.

Table 1. Device structure parameters.

S.no Design Parameter Values/µm

1 CPW (G-S-G) 75-120-75
2 Bridge length (W1) 250
3 Bridge width (L1) 100
4 Signal line gap (G0) 3
5 Anchor length (L2) 80
6 Anchor width (W2) 20

Table 2. Working principle table.

State S1 S2 S3 S4

thru 0 1 0 1
open 0 0 0 0
short 1 0 0 0
load 0 1 1 0

Note: 1 means the switch is closed; 0 means the switch is open.
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3. Device Fabrication Process Flow

Figure 3 is a process flow diagram of an electronic calibration chip based on a RF MEMS
switch. The device uses borophosphosilicate glass (dielectric constant of 4.9) as the substrate
material. A 500 nm thin film of silicon nitride (Si3N4) was grown at 350 ◦C via the PECVD
process and etched to form switch contacts, as shown in Figure 3a. Next, 500 nm aluminum
(Al) was grown via the magnetron sputtering process and etched in phosphoric acid solution
(H3PO4) at 50 ◦C to form the switch-driving electrodes, as described in Figure 3b. Under the
condition of RF power of 300 W and airflow of 200 sccm, tantalum nitride film was grown
via magnetron sputtering for 10 min as the load resistor in Figure 3c. A silicon nitride film
of 300 nm was grown as an isolation layer to avoid electrical breakdown easily occurring
during device operation, and exposing the TaN resistance by etching, shown in Figure 3d.
Additionally, 50 nm/150 nm Ti/Au was grown as a seed layer, and 2µm gold was prepared
via a micro-plating process as a coplanar waveguide for RF signal transmission in Figure 3e.
A Ti/Au seed layer was removed via wet etching. The silicon nitride isolation layer was
etched by photolithography and dry etching to expose the underlying PAD in Figure 3f. From
Figure 3g, spin-coated polyimide was used as the sacrificial layer of the device, and precured
at 80 ◦C for 5 h. After the anchors in the sacrificial layer were obtained by a mask and wet
etching, the sacrificial layer was cured at 300 ◦C in Figure 3h. Then, 100 nm gold was sputtered
as the seed layer, and the top electrode of the switch was fabricated by a micro-electroplating
process at 60 ◦C, as shown in Figure 3i. Under the condition of radio frequency power of
400 W, the sacrificial layer was etched by oxygen plasma to release the sacrificial layer, shown
in Figure 3j. The surface structure of the device prepared by the surface micromachining
process is shown in Figure 4, and the detailed structure of the RF MEMS switch in the device
is shown in Figure 5.
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4. Device Performance Test

The microwave test system is shown in Figure 6. As can be seen from the figure, the
electronic calibration chip is connected to the vector network analyzer through the RF probe
and the RF transmission line. In addition, the signal from the DC voltage source passes
through the voltage amplifier to the actuation electrode of the switch on the electronic
calibration chip. When the applied voltage reaches the driving voltage of the switch, the
upper electrode moves vertically downward under the action of electrostatic force, the
switch is closed and the signal is turned on. Thus, the calibration state is switched by
controlling the RF MEMS switch on or off for each channel. The performance of the device
in different states is characterized by the vector network analyzer. The test results are
shown in Figure 7. In the open circuit state, the return loss of port 1 is less than 0.7 dB; in
the short-circuit state, the echo state of port 1 is less than 3.5 dB. In the load state, the return
loss of port 1 is less than 25 dB, which is small compared with the simulation results and
meets the design requirements. In the pass-through state, the insertion loss between the
ports is less than 1 dB, which is slightly greater than the design result, which is the result
of the loss of the test environment and the probe front end. The port isolation is greater
than 30 dB, which meets the design results. The reasons for the positive return loss may
include two aspects. On the one hand, the surrounding electromagnetic environment is not
shielded. On the other hand, it is caused by the poor contact between the probe and the
calibration chip, as well as the connection line and the port of the vector network analyzer.
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Table 3 provides the comparison between the simulation results and the test results
of the MEMS electronic calibration chip designed in this paper. It can be seen that the
test results are basically consistent with the simulation results. The deviation is caused by
uncontrollable factors present during processing. Table 4 provides a comparison between
the results for currently used calibration chips and the electronic calibration chip designed
in this study. As can be seen from Table 3, the proposed electronic calibration component
achieves the conversion of different calibration states by controlling the on–off state of RF
MEMS switch, thus improving the efficiency of calibration. Compared with the previous
calibration devices, the proposed electronic calibration component has the advantages of
less loss, small size and high integration.
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Table 3. Comparison of simulation results and test results.

State of Calibration Simulation Result Test Result

Open S11 < 1.0 dB S11 < 0.7 dB
Short S11 < 3.5 dB S11 < 3.5 dB
Load S11 < 20 dB S11 < 25 dB
Thru S21 < 0.20 dB S21 < 1.0 dB

Table 4. Comparison with previous work.

Years 2014 [5] 2017 [6] 2021 [7] This Paper

Frequency (GHz) 40 50 20 26.5
Size (mm) – – 6.00 × 2.80 × 0.80 2.748 × 2.200 × 0.50
Material Ceramic GaAs glass glass
Principle SOLT SOLT SOLT SOLT

Type Discrete Discrete Integrated Integrated

5. Conclusions

In this paper, the electronic calibration chips in four calibration states are proposed.
They are composed of the three cascaded MEMS SPDT switches and one load resistance.
The MEMS calibration chip can not only meet the calibration accuracy and efficiency of
device on-chip testing, but also provide reduced size, loss and calibration cost. It has certain
application value in microwave instruments, on-chip testing and other fields.
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