Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = SNHG family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2995 KiB  
Review
Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs
by Matthew Huo, Sudhir Kumar Rai, Ken Nakatsu, Youping Deng and Mayumi Jijiwa
Int. J. Mol. Sci. 2024, 25(5), 2923; https://doi.org/10.3390/ijms25052923 - 2 Mar 2024
Cited by 5 | Viewed by 4229
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such [...] Read more.
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families—box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA–cancer interactions and inspire potential snoRNA-related cancer therapies. Full article
Show Figures

Figure 1

11 pages, 1517 KiB  
Review
The Roles of SNHG Family in Osteoblast Differentiation
by An-Qi Tan and Yun-Fei Zheng
Genes 2022, 13(12), 2268; https://doi.org/10.3390/genes13122268 - 2 Dec 2022
Cited by 10 | Viewed by 2792
Abstract
Small nucleolar RNA host genes (SNHGs), members of long-chain noncoding RNAs (lncRNAs), have received increasing attention regarding their roles in multiple bone diseases. Studies have revealed that SNHGs display unique expression profile during osteoblast differentiation and that they could act as [...] Read more.
Small nucleolar RNA host genes (SNHGs), members of long-chain noncoding RNAs (lncRNAs), have received increasing attention regarding their roles in multiple bone diseases. Studies have revealed that SNHGs display unique expression profile during osteoblast differentiation and that they could act as promising biomarkers of certain bone diseases, such as osteoporosis. Osteogenesis of mesenchymal stem cells (MSCs) is an important part of bone repair and reconstruction. Moreover, studies confirmed that the SNHG family participate in the regulation of osteogenic differentiation of MSCs in part by regulating important pathways of osteogenesis, such as Wnt/β-catenin signaling. Based on these observations, clarifying the SNHG family’s roles in osteogenesis (especially in MSCs) and their related mechanisms would provide novel ideas for possible applications of lncRNAs in the diagnosis and treatment of bone diseases. After searching, screening, browsing and intensive reading, we uncovered more than 30 papers related to the SNHG family and osteoblast differentiation that were published in recent years. Here, our review aims to summarize these findings in order to provide a theoretical basis for further research. Full article
(This article belongs to the Special Issue Genetics Studies of Bone Disease)
Show Figures

Figure 1

19 pages, 2568 KiB  
Article
Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells
by Keren Zohar, Eliran Giladi, Tsiona Eliyahu and Michal Linial
Non-Coding RNA 2022, 8(6), 72; https://doi.org/10.3390/ncrna8060072 - 25 Oct 2022
Cited by 4 | Viewed by 2996
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, [...] Read more.
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability. Full article
(This article belongs to the Collection Feature Papers in Non-Coding RNA)
Show Figures

Figure 1

16 pages, 5699 KiB  
Article
The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling
by Daniel Pensold, Julia Gehrmann, Georg Pitschelatow, Asa Walberg, Kai Braunsteffer, Julia Reichard, Amin Ravaei, Jenice Linde, Angelika Lampert, Ivan G. Costa and Geraldine Zimmer-Bensch
Int. J. Mol. Sci. 2021, 22(3), 1332; https://doi.org/10.3390/ijms22031332 - 29 Jan 2021
Cited by 5 | Viewed by 4211
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph [...] Read more.
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma. Full article
Show Figures

Figure 1

Back to TopTop