Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Runx2 P2 promotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2235 KiB  
Article
CCAAT/Enhancer-Binding Protein β (C/EBPβ) Regulates Calcium Deposition in Smooth Muscle Cells
by Nakwon Choe, Sera Shin, Young-Kook Kim, Hyun Kook and Duk-Hwa Kwon
Int. J. Mol. Sci. 2024, 25(24), 13667; https://doi.org/10.3390/ijms252413667 - 20 Dec 2024
Cited by 1 | Viewed by 1043
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and [...] Read more.
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D3. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation. Quantitative RT-PCR and Western blot analysis confirmed that C/EBPβ was upregulated in Pi-treated A10 cells, a rat VSMC line, as well as vitamin D3-treated mouse aorta. The overexpression of C/EBPβ in A10 cells increased bone runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) mRNA in the presence of Pi, as well as potentiating the Pi-induced increase in calcium contents. The Runx2 expression was increased by C/EBPβ through Runx2 P2 promotor. Our results suggest that a Pi-induced increase in C/EBPβ is a critical step in vascular calcification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 3862 KiB  
Article
Inhibition of GSK-3β Enhances Osteoblast Differentiation of Human Mesenchymal Stem Cells through Wnt Signalling Overexpressing Runx2
by Nihal AlMuraikhi, Sarah Binhamdan, Hanouf Alaskar, Amal Alotaibi, Sumaiya Tareen, Manikandan Muthurangan and Musaad Alfayez
Int. J. Mol. Sci. 2023, 24(8), 7164; https://doi.org/10.3390/ijms24087164 - 12 Apr 2023
Cited by 15 | Viewed by 3444
Abstract
Small-molecule-inhibitor-based bone differentiation has been recently exploited as a novel approach to regulating osteogenesis-related signaling pathways. In this study, we identified 1-Azakenpaullone, a highly selective inhibitor of glycogen synthase kinase-3β (GSK-3β), as a powerful inducer of osteoblastic differentiation and mineralization of human mesenchymal [...] Read more.
Small-molecule-inhibitor-based bone differentiation has been recently exploited as a novel approach to regulating osteogenesis-related signaling pathways. In this study, we identified 1-Azakenpaullone, a highly selective inhibitor of glycogen synthase kinase-3β (GSK-3β), as a powerful inducer of osteoblastic differentiation and mineralization of human mesenchymal stem cells (MSCs). GSK-3β is a serine-threonine protein kinase that plays a major role in different disease development. GSK-3β is a key regulator of Runx2 activity in osteoblastic formation. We evaluated alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin Red staining to assess the mineralization of cultured human MSCs. Gene expression profiling was assessed using an Agilent microarray platform, and bioinformatics were performed using Ingenuity Pathway Analysis software. Human MSCs treated with 1-Azakenpaullone showed higher ALP activity, increased in vitro mineralized matrix formation, and the upregulation of osteoblast-specific marker gene expression. Global gene expression profiling of 1-Azakenpaullone-treated human MSCs identified 1750 upregulated and 2171 downregulated mRNA transcripts compared to control cells. It also suggested possible changes in various signaling pathways, including Wnt, TGFβ, and Hedgehog. Further bioinformatics analysis employing Ingenuity Pathway Analysis recognized significant enrichment in the 1-Azakenpaullone-treated cells of genetic networks involved in CAMP, PI3K (Complex), P38 MAPK, and HIF1A signaling and functional categories associated with connective tissue development. Our results suggest that 1-Azakenpaullone significantly induced the osteoblastic differentiation and mineralization of human MSCs mediated by the activation of Wnt signaling and the nuclear accumulation of β-catenin, leading to the upregulation of Runx2, a key transcription factor that ultimately promotes the expression of osteoblast-specific genes. Thus, 1-Azakenpaullone could be used as an osteo-promotor factor in bone tissue engineering. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

Back to TopTop