Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Roxburgh roxburghii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3752 KiB  
Article
Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear
by Yiming Wang, Xuechong Xie, Huijie Chen, Kai Zhang, Benliang Zhao and Rongliang Qiu
Plants 2024, 13(6), 749; https://doi.org/10.3390/plants13060749 - 7 Mar 2024
Viewed by 1422
Abstract
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, [...] Read more.
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil’s organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

11 pages, 1085 KiB  
Article
Chitosan Can Induce Rosa roxburghii Tratt. against Sphaerotheca sp. and Enhance Its Resistance, Photosynthesis, Yield, and Quality
by Jiaohong Li, Zhenxiang Guo, Yue Luo, Xiaomao Wu and Huaming An
Horticulturae 2021, 7(9), 289; https://doi.org/10.3390/horticulturae7090289 - 6 Sep 2021
Cited by 20 | Viewed by 2715
Abstract
Powdery mildew caused by Sphaerotheca sp. is the most serious disease of Rosa roxburghii cultivation. In this study, the foliar application of chitosan induced Rosa roxburghii Tratt. against Sphaerotheca sp. and its effects on the disease resistance, growth, yield, and quality of R [...] Read more.
Powdery mildew caused by Sphaerotheca sp. is the most serious disease of Rosa roxburghii cultivation. In this study, the foliar application of chitosan induced Rosa roxburghii Tratt. against Sphaerotheca sp. and its effects on the disease resistance, growth, yield, and quality of R. roxburghii were investigated. The results show that the foliar application of 1.0%~1.5% chitosan could effectively control Sphaerotheca sp. of R. roxburghii with the inducing control efficacy of 69.30%~72.87%. The foliar application of 1.0%~1.5% chitosan significantly (p < 0.01) increased proline, soluble sugar, flavonoids, superoxide dismutase (SOD), and polyphenoloxidase (POD) activities of the R. roxburghii leaf and decreased its malonaldehyde (MDA), as well as reliably enhanced its photosynthetic rate and chlorophyll. Moreover, the foliar application of 1.0%~1.5% chitosan notably improved single fruit weight, yield, vitamin C, soluble solid, soluble sugar, total acidity, soluble protein, flavonoids, and SOD activity of R. roxburghii fruits. This study highlights that chitosan can be used as an ideal, efficient, safe, and economical inductor for controlling powdery mildew of R. Roxburgh and enhancing its resistance, growth, yield, and quality. Full article
Show Figures

Figure 1

Back to TopTop