Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Rossellomorea marisflavi NDS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1869 KB  
Article
Optimization of Fermentation Conditions for Enhanced Single Cell Protein Production by Rossellomorea marisflavi NDS and Nutritional Composition Analysis
by Hui Zhang, Wenwen Zhang, Wen Zhang, Minghan Yin, Lefei Jiao, Tinghong Ming, Xiwen Jia, Moussa Gouife, Jiajie Xu and Fei Kong
Foods 2025, 14(17), 3066; https://doi.org/10.3390/foods14173066 - 30 Aug 2025
Cited by 1 | Viewed by 2378
Abstract
Microbial proteins offer a sustainable alternative for animal nutrition. Rossellomorea marisflavi NDS, a bacterium isolated from seawater, was previously identified as a promising candidate due to its high protein content. This study aimed to enhance its single cell protein production through systemic fermentation [...] Read more.
Microbial proteins offer a sustainable alternative for animal nutrition. Rossellomorea marisflavi NDS, a bacterium isolated from seawater, was previously identified as a promising candidate due to its high protein content. This study aimed to enhance its single cell protein production through systemic fermentation optimization. Single-factor optimization in shake flask determined the optimal conditions to be: a salinity of 20‰ NaCl, a temperature of 32 °C, and an initial pH of 7.3, and a medium composed of 1% (w/v) corn flour, 1% peptone, 0.3% beef extract, and 0.2% KCl. Scaling up to a 10 L bioreactor demonstrated that a two-stage agitation strategy (150 rpm for the first 20 h followed by 180 rpm for the remaining 12 h) enhanced single cell protein yield. Furthermore, allowing the pH to fluctuate freely was more beneficial for protein production than maintaining a constant pH of 7.3 ± 0.02. Under these optimized conditions, the biomass composition (wet weight) was determined to be 2.3767 ± 0.0205% crude ash, 15.6013 ± 0.0082% crude protein, 0.1023 ± 0.0026% crude lipid, and 2.6997 ± 0.0021% carbohydrates. Amino acid analysis revealed a rich profile, with lysine and glutamic acid being the predominant essential and non-essential amino acids, respectively. Fatty acids analysis indicated that C14:1n5 was the most dominant. These findings underscore the potential of R. marisflavi NDS as a high-quality dietary protein supplement and provide a solid foundation for its industrial-scale production. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

Back to TopTop