Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Roger Penrose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1147 KiB  
Review
α-Synuclein Fibrils as Penrose Machines: A Chameleon in the Gear
by Francesca De Giorgi, Vladimir N. Uversky and François Ichas
Biomolecules 2022, 12(4), 494; https://doi.org/10.3390/biom12040494 - 24 Mar 2022
Cited by 3 | Viewed by 4385
Abstract
In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his [...] Read more.
In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here. By making a 30-year-jump in the early 90’s, we evoke the studies performed by Peter Lansbury and his group in which α-Synuclein (α-Syn) was for the first time (i) compared to a prion; (ii) shown to contain a fibrillization-prone domain capable of seeding its own assembly into fibrils; (iii) identified as an intrinsically disordered protein (IDP), and which, in the early 2000s, (iv) was described by one of us as a protein chameleon. We use these temporally distant breakthroughs to propose that the combination of the chameleon nature of α-Syn with the rigid gear of the Penrose machine is sufficient to account for a phenomenon that is of current interest: the emergence and the spread of a variety of α-Syn fibril strains in α-Synucleinopathies. Full article
Show Figures

Figure 1

35 pages, 512 KiB  
Article
On the Direction of Time: From Reichenbach to Prigogine and Penrose
by Said Mikki
Philosophies 2021, 6(4), 79; https://doi.org/10.3390/philosophies6040079 - 24 Sep 2021
Cited by 3 | Viewed by 4722
Abstract
The question why natural processes tend to flow along a preferred direction has always been considered from within the perspective of the Second Law of Thermodynamics, especially its statistical formulation due to Maxwell and Boltzmann. In this article, we re-examine the subject from [...] Read more.
The question why natural processes tend to flow along a preferred direction has always been considered from within the perspective of the Second Law of Thermodynamics, especially its statistical formulation due to Maxwell and Boltzmann. In this article, we re-examine the subject from the perspective of a new historico-philosophical formulation based on the careful use of selected theoretical elements taken from three key modern thinkers: Hans Reichenbach, Ilya Prigogine, and Roger Penrose, who are seldom considered together in the literature. We emphasize in our analysis how the entropy concept was introduced in response to the desire to extend the applicability of the Second Law to the cosmos at large (Reichenbach and Penrose), and to examine whether intrinsic irreversibility is a fundamental universal characteristics of nature (Prigogine). While the three thinkers operate with vastly different technical proposals and belong to quite distinct intellectual backgrounds, some similarities are detected in their thinking. We philosophically examine these similarities but also bring into focus the uniqueness of each approach. Our purpose is not providing an exhaustive derivations of logical concepts identified in one thinker in terms of ideas found in the others. Instead, the main objective of this work is to stimulate historico-philosophical investigations and inquiries into the problem of the direction of time in nature by way of crossdisciplinary examinations of previous theories commonly treated in literature as disparate domains. Full article
Show Figures

Figure 1

16 pages, 912 KiB  
Review
Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
by Andrzej Królak and Paritosh Verma
Universe 2021, 7(5), 137; https://doi.org/10.3390/universe7050137 - 9 May 2021
Cited by 8 | Viewed by 5165
Abstract
In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short [...] Read more.
In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Full article
(This article belongs to the Special Issue Gravitational Singularities and Their Quantum Fates)
Show Figures

Figure 1

25 pages, 508 KiB  
Review
Fifty Years of Energy Extraction from Rotating Black Hole: Revisiting Magnetic Penrose Process
by Arman Tursunov and Naresh Dadhich
Universe 2019, 5(5), 125; https://doi.org/10.3390/universe5050125 - 22 May 2019
Cited by 49 | Viewed by 4412
Abstract
Magnetic Penrose process (MPP) is not only the most exciting and fascinating process mining the rotational energy of black hole but it is also the favored astrophysically viable mechanism for high energy sources and phenomena. It operates in three regimes of efficiency, namely [...] Read more.
Magnetic Penrose process (MPP) is not only the most exciting and fascinating process mining the rotational energy of black hole but it is also the favored astrophysically viable mechanism for high energy sources and phenomena. It operates in three regimes of efficiency, namely low, moderate and ultra, depending on the magnetization and charging of spinning black holes in astrophysical setting. In this paper, we revisit MPP with a comprehensive discussion of its physics in different regimes, and compare its operation with other competing mechanisms. We show that MPP could in principle foot the bill for powering engine of such phenomena as ultra-high-energy cosmic rays, relativistic jets, fast radio bursts, quasars, AGNs, etc. Further, it also leads to a number of important observable predictions. All this beautifully bears out the promise of a new vista of energy powerhouse heralded by Roger Penrose half a century ago through this process, and it has today risen in its magnetically empowered version of mid 1980s from a purely thought experiment of academic interest to a realistic powering mechanism for various high-energy astrophysical phenomena. Full article
Show Figures

Figure 1

Back to TopTop