Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Reykjanes Ridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 16443 KiB  
Article
Influence of Melt Supply on the Spreading State of a Slow–Ultraslow-Spreading Ridge: The Reykjanes Ridge, North Atlantic
by Lihong Zhao, Yingzi Liu, Zilong Ling, Pengyao Zhi, Faqiang Zhao, Hongqin Liu and Jinwei Zhang
J. Mar. Sci. Eng. 2024, 12(6), 1031; https://doi.org/10.3390/jmse12061031 - 20 Jun 2024
Viewed by 1179
Abstract
Although recent research suggests that the morphology and crustal structure of slow–ultraslow-spreading ridges are mainly controlled by melt supply, there is a lack of quantitative understanding of the effect of systematic changes in melt supply on the seafloor spreading state of mid-ocean ridges. [...] Read more.
Although recent research suggests that the morphology and crustal structure of slow–ultraslow-spreading ridges are mainly controlled by melt supply, there is a lack of quantitative understanding of the effect of systematic changes in melt supply on the seafloor spreading state of mid-ocean ridges. In this study, we used bathymetry, free-air gravity anomaly, and sediment thickness data to calculate the residual bathymetry, mantle Bouguer gravity and crustal thickness of the Reykjanes Ridge. According to the gradient of changes in crustal thickness and residual bathymetry along the axis, the influence of melt supply on the spreading state of the Reykjanes Ridge can be divided into three zones: ultra-strong effect zone (0–160 km), strong effect zone (160–610 km), and weak effect zone (610–930 km). In the ultra-strong effect zone, excess melt supply and a higher melting degree result in a strong upwelling and large melt eruption. The change in relative position between the Reykjanes Ridge and the Iceland hotspot results in the spreading state of the Reykjanes Ridge transforming from asymmetric spreading to symmetric spreading. In the strong effect zone, the decrease in melt supply and melting degree weakens the mantle upwelling and enhances the viscosity of the dehydrated mantle layer. Sufficient viscosity of the dehydrated mantle layer forces asymmetric asthenosphere rise along the sloping boundary of the lithosphere, resulting in symmetric spreading. In the weak effect zone, the pattern of magma upwelling becomes a focused magma supply pattern similar to that of the slow–ultraslow-spreading of the mid-ocean ridge, and tectonics dominate the spreading process. The asymmetry of this weak effect zone may be due to the concentration of tectonic and magmatic activity on one flank of the ridge. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

15 pages, 4826 KiB  
Article
DNA Barcoding of Cold-Water Coral-Associated Ophiuroid Fauna from the North Atlantic
by Angelina Eichsteller, James Taylor, Sabine Stöhr, Saskia Brix and Pedro Martìnez Arbizu
Diversity 2022, 14(5), 358; https://doi.org/10.3390/d14050358 - 3 May 2022
Cited by 6 | Viewed by 3609
Abstract
In this study we focus on the ophiuroid species associated with cold-water corals south of Iceland. The specimens were sampled with the ROV Phoca (GEOMAR) in three different areas, during the recent expedition MSM75 connected to the IceAGE_RR (Icelandic marine Animals: Genetics and [...] Read more.
In this study we focus on the ophiuroid species associated with cold-water corals south of Iceland. The specimens were sampled with the ROV Phoca (GEOMAR) in three different areas, during the recent expedition MSM75 connected to the IceAGE_RR (Icelandic marine Animals: Genetics and Ecology_Reykjanes Ridge hydrothermal vent activity) project. In each area, several corals were sampled and the ophiuroid specimens identified to the species level. The integrative taxonomic approach, based on morphological characters and DNA barcoding with COI of the collected ophiuroids, revealed five species that live on corals: Ophiomitrella clavigera (Ljungman, 1865); Ophiomyxa serpentaria (Lyman, 1883); Ophiacantha cuspidata (Lyman, 1879); Ophiactis abyssicola (M. Sars, 1861); and Ophiolebes bacata Koehler, 1921. Some of the sampled deep-sea corals exclusively host the species O.clavigera. The collected species are therefore associated with different corals but do not demonstrate a species-specific distribution. The video data support the integrative taxonomy and confirm the ecological evidence. Full article
(This article belongs to the Special Issue Deep Atlantic Biodiversity)
Show Figures

Figure 1

18 pages, 11102 KiB  
Article
The Distal and Local Volcanic Ash in the Late Pleistocene Sediments of the Termination I Interval at the Reykjanes Ridge, North Atlantic, Based on the Study of the Core AMK-340
by Alexander Matul, Irina F. Gablina, Tatyana A. Khusid, Natalya V. Libina and Antonina I. Mikhailova
Geosciences 2019, 9(9), 379; https://doi.org/10.3390/geosciences9090379 - 30 Aug 2019
Viewed by 3265
Abstract
We made the geochemical analysis of the volcanic material from the sediment core AMK-340 (the Russian research vessel “Akademik Mstislav Keldysh” station 340), the central zone of the Reykjanes Ridge. Two ash-bearing sediment units within the interval of the Termination I can be [...] Read more.
We made the geochemical analysis of the volcanic material from the sediment core AMK-340 (the Russian research vessel “Akademik Mstislav Keldysh” station 340), the central zone of the Reykjanes Ridge. Two ash-bearing sediment units within the interval of the Termination I can be detected. They correlate with the Ash Zone I in the North Atlantic Late Quaternary sediments having an age of 12,170–12,840 years within the Younger Dryas cold chronozone and 13,600–14,540 years within the Bølling–Allerød warm chronozone. The ash of the Younger Dryas unit is presented mostly by the mafic and persilicic material originated from the Icelandic volcanoes. One sediment sample from this unit contained Vedde Ash material. The ash of the Bølling–Allerød unit is presented mostly by the mafic shards which are related to the basalts of the rift zone on the Reykjanes Ridge, having presumably local origin. Possible detection of Vedde Ash could help to specify the timing of the previously reconstructed paleoceanographic changes for the Termination I in the point of the study: significant warming in the area might have occurred as early as 300 years before the end of the conventional Younger Dryas cold chronozone. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
Paleoenvironment Variability during Termination I at the Reykjanes Ridge, North Atlantic
by Alexander Matul, Max S. Barash, Tatyana A. Khusid, Padmasini Behera and Manish Tiwari
Geosciences 2018, 8(10), 375; https://doi.org/10.3390/geosciences8100375 - 11 Oct 2018
Cited by 9 | Viewed by 3595
Abstract
The micropaleontological study (radiolarians and foraminifera) of the sediment core AMK-340, Reykjanes Ridge, North Atlantic, combined with the radiocarbon dating and oxygen and carbon isotopic record, provided data for the reconstruction of the summer paleotemperature across the upper 100 meters water depth range, [...] Read more.
The micropaleontological study (radiolarians and foraminifera) of the sediment core AMK-340, Reykjanes Ridge, North Atlantic, combined with the radiocarbon dating and oxygen and carbon isotopic record, provided data for the reconstruction of the summer paleotemperature across the upper 100 meters water depth range, and paleoenvironments during the Termination I in the age interval of 14.5–8 ka. The response of the main microfossil species to the paleoceanographic changes within the Bølling-Allerød (BA) warming, the Younger Dryas (YD) cold event and final transition to the warm Holocene, was different. The BA warming was well captured by the radiolarian and benthic foraminiferal records, but not the planktic one. The high abundances of the cold-water radiolarian species Amphimelissa setosa as a Greenland/Iceland Sea indicator marked a cooling at the end of the BA and at the start of the YD at 13.2–12.3 ka. The micropaleontological and isotopic data together with the paleotemperature estimates for the Reykjanes Ridge at 60°N document that, after the warm BA, the middle YD ca. 12.5–12.2 ka was the next significant step toward the Holocene warming. The start of the Holocene interglacial conditions was reflected in large representation of the microfossils being indicators of the open boreal North Atlantic environments indicating increasing warmth. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

Back to TopTop