Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Rayleigh surface acoustic wave (R-SAW) resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4109 KiB  
Article
Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation
by Chunlong Cheng, Zihan Lu, Jingwen Yang, Xiaoyue Gong and Qingqing Ke
Materials 2023, 16(8), 3269; https://doi.org/10.3390/ma16083269 - 21 Apr 2023
Cited by 4 | Viewed by 2322
Abstract
Surface acoustic wave (SAW) strain sensors fabricated on piezoelectric substrates have attracted considerable attention due to their attractive features such as passive wireless sensing ability, simple signal processing, high sensitivity, compact size and robustness. To meet the needs of various functioning situations, it [...] Read more.
Surface acoustic wave (SAW) strain sensors fabricated on piezoelectric substrates have attracted considerable attention due to their attractive features such as passive wireless sensing ability, simple signal processing, high sensitivity, compact size and robustness. To meet the needs of various functioning situations, it is desirable to identify the factors that affect the performance of the SAW devices. In this work, we perform a simulation study on Rayleigh surface acoustic wave (RSAW) based on a stacked Al/LiNbO3 system. A SAW strain sensor with a dual-port resonator was modeled using multiphysics finite element model (FEM) method. While FEM has been widely used for numerical calculations of SAW devices, most of the simulation works mainly focus on SAW modes, SAW propagation characteristics and electromechanical coupling coefficients. Herein, we propose a systematic scheme via analyzing the structural parameters of SAW resonators. Evolution of RSAW eigenfrequency, insertion loss (IL), quality factor (Q) and strain transfer rate with different structural parameters are elaborated by FEM simulations. Compared with the reported experimental results, the relative errors of RSAW eigenfrequency and IL are about 3% and 16.3%, respectively, and the absolute errors are 5.8 MHz and 1.63 dB (the corresponding Vout/Vin is only 6.6%). After structural optimization, the obtained resonator Q increases by 15%, IL decreases by 34.6% and the strain transfer rate increases by 2.4%. This work provides a systematic and reliable solution for the structural optimization of dual-port SAW resonators. Full article
Show Figures

Figure 1

15 pages, 4006 KiB  
Article
Layer by Layer Optimization of Langmuir–Blodgett Films for Surface Acoustic Wave (SAW) Based Sensors for Volatile Organic Compounds (VOC) Detection
by Ivan D. Avramov and George R. Ivanov
Coatings 2022, 12(5), 669; https://doi.org/10.3390/coatings12050669 - 13 May 2022
Cited by 7 | Viewed by 3984
Abstract
Rayleigh surface acoustic wave (RSAW)-based resonant sensors, functionalized with single and multiple monomolecular layers of Langmuir–Blodgett (LB) films, were thickness and density optimized for the detection of volatile organic compounds (VOC), which could impose a serious threat on the environment and human health. [...] Read more.
Rayleigh surface acoustic wave (RSAW)-based resonant sensors, functionalized with single and multiple monomolecular layers of Langmuir–Blodgett (LB) films, were thickness and density optimized for the detection of volatile organic compounds (VOC), which could impose a serious threat on the environment and human health. Single layers of a phospholipid (SLP), hexane dissolved arachidic acid (HDAA), and chloroform dissolved arachidic acid (CDAA) were used for the LB film preparation. Several layers of these compounds were deposited on top of each other onto the active surface of high-Q 434 MHz two-port RSAW resonators in a LB trough to prepare a highly sensitive vapor detection quartz surface microbalance (QSM). Frequency shift was measured with a vector network analyzer (VNA). These devices were probed with saturated vapors of hexane, chloroform, methanol, acetone, ethanol, and water after each deposited layer to test the behavior of the QSM’s insertion loss, loaded Q, vapor sensitivity, and to find the optimum trade-off between these parameters for the best real-life sensor performance. With 2200 ppm and 3700 ppm sensitivity to chloroform, HDAA and CDAA coated QSM devices reached the optimum sensor performance at 15 and 11–15 monolayers, respectively. Surface pressure optimized single monolayers of phospholipid LB films were found to provide up to 530 ppm sensitivity to chloroform vapors with a negligible reduction in loss and loaded Q. This vapor sensitivity is higher than the mass of the sensing layer itself, making SLP films an excellent choice for QSM functionalization. Full article
(This article belongs to the Special Issue Thick and Thin Films for Functional Device Applications)
Show Figures

Figure 1

14 pages, 12062 KiB  
Article
Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration
by Wenchang Hao, Jiuling Liu, Minghua Liu, Yong Liang and Shitang He
Sensors 2016, 16(4), 562; https://doi.org/10.3390/s16040562 - 20 Apr 2016
Cited by 40 | Viewed by 8835
Abstract
The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established [...] Read more.
The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

14 pages, 575 KiB  
Article
Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications
by Karekin D. Esmeryan, Ivan D. Avramov and Ekaterina I. Radeva
Micromachines 2012, 3(2), 413-426; https://doi.org/10.3390/mi3020413 - 2 May 2012
Cited by 10 | Viewed by 9012
Abstract
Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and [...] Read more.
Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using a RF-plasma polymerization process, RSAW sensor resonators optimized for maximum gas sensitivity have been coated with chemosensitive HMDSO films at 4 different thicknesses: 50, 100, 150 and 250 nm. Their TFCs have been measured over a (−100 to +110) °C temperature range and compared to the TFC of an uncoated device. An exponential 2,500 ppm downshift of the resonant frequency and a 40 K downshift of the sensor’s turn-over temperature (TOT) are observed when the HMDSO thickness increases from 0 to 250 nm. A partial temperature compensation effect caused by the film is also observed. A third order polynomial fit provides excellent agreement with the experimental TFC curve. The frequency downshift due to mass loading by the film, the TOT and the temperature coefficients are unambiguously related to each other. Full article
(This article belongs to the Special Issue Micromachined High Frequency Acoustic Wave Resonators and Filters)
Show Figures

Figure 1

Back to TopTop