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Abstract: Surface acoustic wave (SAW) strain sensors fabricated on piezoelectric substrates have
attracted considerable attention due to their attractive features such as passive wireless sensing
ability, simple signal processing, high sensitivity, compact size and robustness. To meet the needs
of various functioning situations, it is desirable to identify the factors that affect the performance of
the SAW devices. In this work, we perform a simulation study on Rayleigh surface acoustic wave
(RSAW) based on a stacked Al/LiNbO3 system. A SAW strain sensor with a dual-port resonator
was modeled using multiphysics finite element model (FEM) method. While FEM has been widely
used for numerical calculations of SAW devices, most of the simulation works mainly focus on SAW
modes, SAW propagation characteristics and electromechanical coupling coefficients. Herein, we
propose a systematic scheme via analyzing the structural parameters of SAW resonators. Evolution
of RSAW eigenfrequency, insertion loss (IL), quality factor (Q) and strain transfer rate with different
structural parameters are elaborated by FEM simulations. Compared with the reported experimental
results, the relative errors of RSAW eigenfrequency and IL are about 3% and 16.3%, respectively,
and the absolute errors are 5.8 MHz and 1.63 dB (the corresponding Vout/Vin is only 6.6%). After
structural optimization, the obtained resonator Q increases by 15%, IL decreases by 34.6% and the
strain transfer rate increases by 2.4%. This work provides a systematic and reliable solution for the
structural optimization of dual-port SAW resonators.

Keywords: SAW; strain sensor; dual-port resonator; finite element model; structural optimization

1. Introduction

Real-time strain monitoring has wide applications in industrial manufacture, civil in-
frastructure, motor industries, aerospace and satellite communication for structural health
monitoring and failure prevention [1–3]. Surface acoustic wave (SAW) resonators are inten-
sively studied and hold the promise of in situ applications of temperature [4,5], torque [6,7],
strain [8,9], etc., owing to their attractive features, such as passive wireless sensing ability,
simple signal processing, high sensitivity, compact size and robustness. For example, vari-
ous SAW sensors with tailored designs have been utilized to measure physical quantities,
including temperature [10,11], torque [12,13], strain [14,15] or chemical/biological mass
loading [16,17]. The insertion loss, sensitivity and resolution of SAW sensors are closely
related to the geometries of device and characteristics of material properties. Therefore, it
is desirable to model and simulate a SAW device before fabrication in order to promote the
performance, allowing the optimization of the SAW parameters.

The finite element model (FEM), well implemented by some packages such as COM-
SOL, is widely used for numerically simulating SAW devices. Zaid. T. Salim et al. [18]
constructed a three-dimensional (3D) FEM of dual-port layered SAW devices, and analyzed
its frequency response and electromechanical coupling coefficient with different piezoelec-
tric layer thicknesses. Honglang Li et al. [19] obtained the propagation characteristics of
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RSAW on piezoelectric substrates by using the time-domain analysis method based on
a 3D FEM. However, commercial FEM based on COMSOL software requires a considerable
amount of computation time and a large amount of random access memory to simulate
a full-sized SAW device even in two-dimensional (2D) approximation [20]. Nabila Belkhelfa
and Rafik Serhane [21] used 2D periodic FEM to simulate a Rayleigh wave based on stacked
Al/AlN/Si (100) devices. Evolution curves with respect to acoustic phase velocity, reflec-
tivity and electromechanical coupling coefficient for different Al electrode patterns and
different piezoelectric AlN layer thicknesses were quantified. J. Koskela et al. [22] and
Zhenglin Chen et al. [23] used hierarchical cascading technology to accelerate the simula-
tion of a full-sized 2D FEM with periodic structure. Most of these simulation studies mainly
focused on SAW modes, SAW propagation characteristics and electromechanical coupling
coefficients. However, there is limited work that evaluates or investigates the performance
of SAW sensors with respect to insertion loss (IL), quality factor (Q) and strain transfer
characteristics, which actually plays a dominant role in determining the performance of
SAW strain sensor.

In this work, we systematically simulated and studied the SAW strain sensor based on
a dual-port resonator. The COMSOL Multiphysics 5.6 commercial finite element software
was used to establish 2D models for a quantitative analysis of the total displacement field
of RSAW, eigenfrequency and frequency domain, as well as a 3D model for revealing
behaviors of strain transfer. Aiming to optimize the performance of a sensor with respect to
the IL, Q and strain transfer characteristics, we systematically investigated and evaluated
the effects of the structural parameters of the dual-port resonator, including the number
of input/output interdigital transducer (IDT) finger pairs (Nt), the number of reflection
grating (RG) pairs (Nr), metallization rate (η), electrode thickness (thAl), acoustic aperture
(W), the spacing between input and output IDTs (Ltt), the spacing between RGs and IDTs
(Lrt) and the thickness of the piezoelectric substrate (thLN). This result helps to identify the
key factors that govern the performance of the SAW devices.

2. Theoretical Basis

As shown in Figure 1, a dual-port SAW resonator is usually composed of a piezoelectric
substrate, input/output IDTs deposited on the surface of the piezoelectric substrate and
RGs on the two ends. The IDTs can directly excite and receive SAW. When an input
electrical signal is applied at the input end, it is converted into mechanical energy through
the inverse piezoelectric effect and propagates on the surface of the piezoelectric substrate
in the form of SAW. When the SAW signal reaches the output IDTs, it is again converted
into an output electrical signal by the piezoelectric effect of the substrate, and accordingly
the sensing function is realized by identifying the change of the resonator eigenfrequency.
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Figure 1. The schematic diagram of a dual-port SAW resonator.

The propagation of SAW in a piezoelectric material is governed by the continuum
equations of motion, Maxwell’s equations under the quasi-static assumption, the strain-
mechanical displacement relations, the piezoelectric constitutive relations, and the appro-
priate boundary conditions [24]. The piezoelectric constitutive relations in stress-charge
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form [25] are (to simplify the expressions, the Einstein summation convention is used in
the full text):

Tij = CE
ijkl ·Skl − eT

ikl ·Ek (1)

Di = eikl·Skl + εS
ik·Ek (2)

where, Tij and Di represent, respectively, the second-order stress tensor and the electrical
displacement vector (C/m2). Ek is the electric field vector (V/m), Skl is the second-order
strain tensor. Cijkl, eikl and εik are the fourth-order elasticity tensor (N/m2), third-order
piezoelectric tensor (C/m2) and second-order permittivity tensor (F/m), respectively, which
can be represented as 6 × 6 matrix CE, 6 × 3 matrix e and 3 × 3 matrix εs. The mechanical
behavior of linear elastic materials is governed by the equation of motion:

ρ
∂2ui
∂t2 =

∂Tij

∂xj
(i = 1, 2, 3) (3)

where ρ is the density of the material and ui is the global displacement.
Generally, the propagation velocity of a SAW is 4~5 orders of magnitude lower than

that of an electromagnetic wave. Therefore, the electromagnetic field coupled with SAW
can be approximated as an electrostatic field, and Ek can be expressed as the gradient of
a potential function φ:

Ek = −
∂

∂xk
(k = 1, 2, 3) (4)

The relationship between strain and displacement in piezoelectric materials is:

Skl =
1
2

(
∂uk
∂xl

+
∂ul
∂xk

)
(k, l = 1, 2, 3) (5)

Since the medium is an insulator and there is no free charge, the divergence of the
electric displacement vector D must be equal to zero:

∂Di
∂xi

= 0 (6)

Using the above six equations, the wave equations can be established as [17]:

CE
ijkl

∂2ul
∂xj∂xk

+ eikl
∂2φ

∂xl∂xk
= ρ

∂2ui
∂t2 (7)

eikl
∂2ul

∂xi∂xk
− εs

ik
∂2φ

∂xi∂xk
= 0 (8)

for i, j, k, l = (1, 2, 3).
Equations (7) and (8) can be used to calculate the wave velocity, displacement and

voltage at each node once the boundary conditions are set and the discretization using the
finite element method is performed [26]. Therefore, it is convenient to obtain the input
and output voltage. The eigenfrequency f0 of the SAW resonator mainly depends on SAW
wavelength λ and the phase velocity ν of the SAW in the piezoelectric material:

f0 =
ν

λ
(9)

The IL of the device represents the energy utilization efficiency, which is found by
taking the frequency domain analysis and is defined as [27]:

IL(dB) = −20log10(

∣∣∣∣Vout

Vin

∣∣∣∣) = −S21 (10)
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where Vin is the voltage on the input IDT and Vout is the voltage on the output IDT.
Normally, IL can be characterized by −S21.

Q determines the sensor resolution and wireless transmission distance [28,29]. It
is generally defined as the ratio of the IDTs’ average energy storage to power loss at
eigenfrequency f0, where the average energy storage and power loss are calculated by the
finite element simulation software:

Q = 2π f0
Energy Stored

Power Loss
(11)

3. Simulation Setups

For a frequency domain analysis, a reasonable setting of the scanning range of
frequency can effectively reduce the computational load. Therefore, we first establish
a simplified 2D model (Figure 2a) for eigenfrequency analysis to obtain the approximate
eigenfrequency of RSAW.
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(b) The full-sized 2D model.

However, for dual-port SAW resonators, the structural parameters mentioned in the
introduction section and the profile of the total displacement of RSAW amplitude over
the resonator cannot be presented in a simplified 2D model. Therefore, it is necessary
to establish a full-sized 2D model to analyze the distribution of the total displacement
field of RSAW and conduct a frequency scanning near the eigenfrequency of RSAW to
analyze the influences of these structural parameters on the performances of the dual-port
SAW resonator, as shown in Figure 2b. The accuracy of FEM simulation depends on the
number of mesh elements. Generally, in one unit of size, the more mesh elements there
are, the higher the accuracy will be, but the computational load increases as well. Since the
structural optimization of a full-sized 2D model is time consuming, before conducting the
frequency domain analysis of the full-sized 2D model, we first explore the means of meshing
to reduce the calculation quantity as much as possible on the premise of ensuring accuracy.
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Moreover, the characteristics of strain transfer from the tested structure to the piezo-
electric substrate have a great influence on the performance of SAW strain sensors. The
strain transfer rate will directly affect the sensitivity, and the transition zone will affect the
accuracy of strain measurement. Therefore, a 3D model was established to analyze the
strain transfer characteristics of the lithium niobate (LN) piezoelectric substrate (Figure 3)
so as to maximize the sensitivity and accuracy of SAW strain sensors.
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3.1. The Simplified 2D Model for Eigenfrequency Analysis

Since the displacement of RSAW in the y direction is zero [30] (as shown in Figure 1)
and the length of IDTs is usually ten times longer than its width, the edge effect in IDTs
can be ignored in the simulation. Thus, the 3D structure of a SAW device can be simplified
as a 2D model [31]. Moreover, in general, the finger electrodes of IDTs are periodically
arranged and alternatively biased by high and low voltages (in this paper, high voltage is
1 V and low voltage is 0 V), thus one period of the IDTs (see in Figure 2a) is sufficient to
approximate the whole SAW resonator.

As an anisotropic material, a different orientation of a cut crystal substrate will result in
a different set of material properties, including the elastic matrix CE, coupling matrix e and
relative dielectric constant matrix εs, hence affecting the wave propagation characteristics.
The selection of a unique crystal cut is defined by a set of Euler angles (α, β, γ) [27]. The
Euler angle of 128◦ Y-cut LN is (0, −128◦, 0) for the 2D model, and (0, −38◦, 0) for the 3D
model. Tables 1–4 present the material parameters, structural parameters (see Figure 2b)
and boundary conditions used in the simulation.

3.2. The Full-Sized 2D Model for the Total Displacement Field of RSAW and Frequency
Domain Analysis

As shown in Figure 2b, the initial values for Nt is 50, Nr is 25 (in this paper, Nt and Nr on
both sides are, respectively, equal), Ltt is 20 µm, Lrt is 5 µm and other structural parameters
are shown in Table 3. The connection state of the RGs is open circuit, and each electrode of
the RGs is set to be suspension potential. For the analysis of the total displacement field
of RSAW, the finger electrodes of input IDTs are periodically arranged and alternatively
biased by grounding and 1 V voltage. The finger electrodes of output IDTs are periodically
arranged and alternatively biased by 0 C charge and grounding. For a frequency domain
analysis, the finger electrodes of input IDTs are periodically arranged and alternatively
biased by grounding and a termination power of 1 W. The finger electrodes of output
IDTs are periodically arranged and alternatively biased by termination power of 0 W and
grounding. See Table 5 for boundary conditions.
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Table 1. Non-piezoelectric material parameters used in the simulation.

Material Air Al (Electrodes) Steel AISI 4340

Density, ρ (kg/m3) - 2700 7850
Relative dielectric constant, ε 1 1 -

Young’s modulus, E (Pa) - 7 × 1010 2.05 × 1011

Poisson’s ratio, ν - 0.33 0.28

Table 2. Parameters of piezoelectric material used in the simulation.

Piezoelectric Material LiNbO3

Density, ρ (kg/m3) 4700
Mechanical loss factor [32] 0.001
Dielectric loss factor [32] 0.005

Relative dielectric constant, εs

43.6 0 0
0 43.6 0
0 0 29.16



Coupling matrix, e (C/m2)

 0 0 0
−2.538 2.538 0
0.194 0.194 1.309

0 3.696 −2.534
3.695 0 0

0 0 0



Elastic matrix, CE (1010 Pa)


20.29 5.29 7.49 0.9 0 0
5.29 20.3 7.49 −0.9 0 0
7.49 7.49 24.3 0 0 0
0.9 0.9 0 6 0 0
0 0 0 0 6 0.9
0 0 0 0 0.9 7.5



Table 3. Initialization of the simulation model.

Parameter Value

The wavelength, λ (µm) 20
Metallization rate, η (i.e., a/(λ/2) 0.5

Electrode width, a (µm) 5
Acoustic aperture, W (mm) 2

Air field thickness, (µm) 4
Electrode thickness, thAl (µm) 0.16

128◦ Y-cut LN thickness, thLN (µm) 50
Perfect matching layer (PML) thickness, (µm) 8

Table 4. Boundary conditions used in the 2D model of Figure 2a.

Boundary Mechanical Conditions Electrical Conditions

Г1 - Zero charge
Г2, Г3 Free Continuity

Г4 Fixed Zero charge
ГL2, ГL3, ГR2, ГR3 Periodic boundary conditions Periodic boundary conditions

ГL1, ГR1 - Periodic boundary conditions

Table 5. Boundary conditions used in the 2D model of Figure 2b.

Boundary Mechanical Conditions Electrical Conditions

Г2, Г3 Free Continuity
Г4 Fixed Zero charge

ГL2, ГR2 Free Zero charge
Г1, ГL1, ГR1 - Zero charge
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3.3. Meshing

The energy of the RSAW is exponentially decaying into the material and is gener-
ally confined to a few wavelengths within the surface [30]. Therefore, relatively precise
mesh cells are needed near the surface of the piezoelectric material under the electrodes.
A mapping grid is used for subdivision for aluminum (Al) electrodes, LN piezoelectric
substrate and PML layer. Among them, for the LN piezoelectric substrate, a reverse arith-
metic sequence mesh is applied in z direction (i.e., in the thickness direction), where the
number of elements is 15 and the element size ratio (i.e., the ratio of the maximum mesh
cell area to the minimum mesh cell area) is 5. For the PML (perfect matching layer), eight
layers of meshes are uniformly distributed in z direction. In x direction (i.e., the SAW
propagation direction), meshing is carried out by controlling the maximum cell size, which
is set as λ/num, where num is the number of meshes in each wavelength. Then, num is
scanned parametrically near the eigenfrequency of RSAW with a proper step to acquire
its optimized value. In order to display the results more intuitively, only the frequency
range where RSAW is located is plotted in Figure 4, as is the case of the subsequent figures
involving the results in the frequency domain. It can be seen that when num ≥ 8, the
corresponding peaks of RSAW ultimately coincide, which indicates that the simulation
accuracy has reached saturation when eight mesh cells are allocated to each wavelength.
Therefore, num is set to 8 during the simulation of this model. As for the air domain, it has
little effect on the simulation results, so the triangular mesh with conventional element size
is used for subdivision.
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3.4. A 3D Simulation Model for Strain Transfer Analysis

Since the strain distribution on the upper surface of LN is not uniform, a strain
transition zone is built in order to obtain the strain distribution characteristics. The LN is
divided into N strips with a wavelength of 20 µm (Figure 3). The larger layer at the bottom
is Steel AISI 4340, which is used for generating strain, with a length of 64 mm, a width of
19.2 mm and a thickness of 0.8 mm. The cuboid above it is LN, with a length of 20 × N µm,
a width of 0.5 × 20 × N µm and a thickness of hLN. See Tables 1 and 2 for Steel AISI 4340
and LN piezoelectric material parameters, respectively. A force of 4 × 108 N/m2 is applied
in the x-direction of the S1-plane (Figure 3) and the fixed constrained boundary condition
is used for the S2-plane, while all other planes are free.
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4. Results and Discussion
4.1. Eigenfrequency Analysis

The admittance curve of the simplified 2D model (Figure 2a) under initial structural
parameters (Table 3) is shown in Figure 5a and the inset figure shows a deformed mode
when RSAW is excited. The resonant frequency is found to be around 195 MHz. By
calculating the eigenfrequencies of the model with different electrode thicknesses and
metallization rates, the resonant frequency varies: decreasing with the increase in thAl and
η (shown in Figure 5b). This is mainly due to the mass increase with the increasing of
electrode thickness and metallization rate, which is called the mass loading effect [33].
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4.2. The Analysis of Total Displacement Field of RSAW

The eigenfrequency analysis of the full-sized 2D model under the initial structural
parameters was performed, and the cloud map of the total displacement field of RSAW
is shown in Figure 6. It shows an elliptical displacement of the RSAW. In addition, in the
z direction (i.e., in the thickness direction), the energy of the RSAW is mainly confined to
one wavelength, and in the x direction (i.e., the RSAW propagation direction), its energy is
mainly concentrated between two sets of reflecting gratings, indicating that the RSAW is
well excited.

4.3. Frequency Domain Analysis

According to the eigenfrequency analysis of the model shown in Figure 2a, the approx-
imate resonant frequency fr of RSAW is 195.1 MHz under the initial structural parameters.
Based on this, the frequency scanning of the model shown in Figure 2b under different
structural parameters is carried out around the above frequency, and the scanning step
is 0.1 MHz. As shown in Figure 7a, with the initial structural parameters (i.e., Nt is 50),
the corresponding frequency of the resonant peak in Rayleigh mode is 200.8 MHz, IL is
8.37 dB (i.e., Vout/Vin is 38.2%) and Q is 468.31. For a dual-port SAW resonator with the
same material and structural parameters, the experimental results reported by Hongsheng
Xu et al. [9] show that the frequency and IL are 195 MHz and 10 dB (i.e., Vout/Vin is 31.6%),
respectively. Among them, the relative errors of frequency and IL are about 3% and 16.3%,
respectively, and the absolute errors are 5.8 MHz and 1.63 dB (the corresponding Vout/Vin
is only 6.6%), indicating that our simulation method is reasonable. The small difference
may mainly originate from the following: first, the material parameters used by Hongsheng
Xu et al. [9] are not exactly the same as those used in the simulation model; second, the
coupling loss and electrode resistance loss are not considered in the simulation; third, the
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structural parameters of the actually manufactured dual-port SAW resonator are not exactly
the same as those of the model used in the simulation due to the process errors.
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The variation curves of IL and Q of RSAW with respect to the structural parameters of
the resonator are shown in Figures 7 and 8, where the insets show the resonant peaks of the
Rayleigh mode under different structural parameters. As shown in Figure 7a, when the
number of IDT finger pairs Nt is lower than 60, Q of this resonator increases with Nt and
becomes to saturate with Nt greater than 60. Meanwhile, the Nt of 60 acts as an inflection
point of IL, which declines at a small value of Nt and increases thereafter. The loss of
electric energy of IDTs due to an outward radiation of the SAW energy is represented by
the acoustic radiation conductance G0, which is calculated as [34]:

G0 ≈ 8NtK2CT fr (12)

CT = NtWC0 (13)

where C0 is the unit length capacitance of an IDT finger pair, K is the electromechanical
coupling coefficient and CT is IDTs’ total electrostatic capacity with Nt pairs of interfinger
electrodes in parallel. According to Formula (12), Nt

2 is proportional to the acoustic
radiation conductance; therefore, with the increase in the number of IDT finger pairs, the
amount of electrical energy converted into mechanical energy increases, more energy is
consequently emitted from the outward radiation and the IL becomes smaller. However,
this analysis conflicts with the simulation results. The main reason may be that Formula (12)
is derived based on the equivalent circuit model, which ignores the second-order effects as
mentioned in the introduction section. It is because of these second-order effects that the IL
increases rather than decreases when the number of IDT finger pairs exceeds a critical value.

Materials 2023, 16, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 8. The variation curves of IL and Q of RSAW with respect to the structural parameters of the 

resonator, where the insets show the resonant peaks of the Rayleigh mode. (a) Acoustic aperture. 

(b) The distance between the input and output IDT. (c) The distance between the IDT and reflective 

grid. (d) The thickness of LN. 

4.4. The Steady State Analysis 

After performing the steady state calculation on the model shown in Figure 3, the 

distribution of cloud map of the strain tensor component S11 is plotted in Figure 9a, which 

shows obvious strain gradients at both ends of the steel plate as well as the piezoelectric 

substrate. Therefore, the steel plate needs to be large enough to ensure that the piezoelec-

tric substrate falls in its uniform strain region. In addition, to ensure the accuracy of the 

measurement of the strain sensor, the electrodes also need to be distributed in the uniform 

strain region of the piezoelectric substrate. Taking the strain transfer rate as a reference, 

the strain transfer characteristics of piezoelectric substrates under different thicknesses 

and lengths (i.e., Z and X directions) are analyzed, and the results are shown in Figure 

9b,c. The expression of strain transfer rate 𝜎 is: 

𝜎 =
𝑠𝐿𝑁

𝑠𝑠𝑡
  (18) 

where sst and sLN are the S11 component of strain tensors which belong to the upper surfaces 

of the steel plate and LN substrate, respectively. In addition, regions with default strain 

gradients ≤1% are defined as uniform strain regions (USRs). 

As Figure 9b illustrates, with the increase in LN thickness, the strain transfer rate and 

the length of USR almost decrease linearly, indicating that the thicker the piezoelectric 

substrate is, the less favorable the strain transfer and the smaller the sensitivity of the 

strain sensor and the area available for electrode placement. Combined with the simula-

tion results in Figure 8d, the thickness of LN piezoelectric substrate is selected as 40 μm, 

and then the length of LN is analyzed. As shown in Figure 9c, the strain transfer rate and 

the length of the USR increase largely linearly with the increase in the length of LN, which 

indicates that the larger the length of the piezoelectric substrate, the more conducive it 

will be to strain transfer, thus increasing the sensitivity of the strain sensor and the region 

Figure 8. The variation curves of IL and Q of RSAW with respect to the structural parameters of the
resonator, where the insets show the resonant peaks of the Rayleigh mode. (a) Acoustic aperture.
(b) The distance between the input and output IDT. (c) The distance between the IDT and reflective
grid. (d) The thickness of LN.
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The Q of SAW resonator can be expressed as:

Q =
πLe f

(1− |δ|λ) (14)

where Lef is the effective length of the cavity and δ is the reflection coefficient. It can be seen
from Formula (14) that the higher δ is, the higher the Q of the resonator will be. δ can be
expressed as:

δ = tanhNr

∣∣∣∣∆Z
Z

∣∣∣∣ (15)

where Z is the acoustic impedance in the free surface area between electrodes and the
acoustic impedance in the electrode area is Zm = Z + ∆Z. Therefore, the performance of
the resonator can be improved by increasing the number of RG pairs Nr. However, with
the increase in Nr, the increasing of Q slows down and finally reaches saturation. The
simulation results are shown in Figure 7b, which are in good agreement with the theoretical
expectation. In addition, with the change of Nr, IL shows the inverse trend as Q.

It can be seen from Figure 7c that with the increase in metallization rate η, IL first
decreases and then increases, and shows a stable value at about η = 0.5. The Q increases
first and then becomes stable after η = 0.6.

As shown in Figure 7d, with the increase in electrode thickness thAl, IL first decreases
and then increases, and shows a minimum value at about thAl = 0.2 µm. In contrast,
Q increases monotonically with thAl.

According to Equations (12) and (13), the increase in the acoustic aperture W will
lead to the increase in the total electrostatic capacity of IDTs, thus increasing the acoustic
radiation conductance and decreasing IL. On the other hand, if W is too large, the size of
the resonator will become too big, and the loss will also increase. The variation curves of Q
and IL with respect to W are shown in Figure 8a. It can be seen that with the increase in
W, Q slowly increases, while IL first decreases and then remains nearly unchanged after
W = 2.2 mm.

For a dual-port SAW resonator to generate standing waves, its Ltt and Lrt should
satisfy the following relations:

Ltt =
m
2

λ (16)

Lrt =

(
n− 1

2

)
λ

2
(17)

where m and n are positive integers. As shown in Figure 8b,c, Q and IL fluctuate in a small
range, where Q shows an overall downward trend and IL an upward trend with the increase
in Ltt and Lrt; that is, in general, a smaller Ltt and Lrt are better to reduce the transmission
loss and acquire a higher Q. Moreover, Figure 8b shows that the IL is relatively small
when the distance between the input and output IDTs satisfies an odd multiple of the
half-wavelength.

Since the energy of RSAW is mainly confined to the surface of the piezoelectric sub-
strate, RSAW cannot be excited effectively when the substrate is too thin, and its energy
will escape through the piezoelectric substrate, resulting in a large energy loss. As shown in
Figure 8d, when the thickness of LN is less than 20 µm (i.e., one wavelength in this paper),
the resonant peak of the Rayleigh mode has become insignificant. With the increase in LN
thickness, Q gradually increases and finally reaches a stable value, while IL decreases first
and then slightly increases.

4.4. The Steady State Analysis

After performing the steady state calculation on the model shown in Figure 3, the
distribution of cloud map of the strain tensor component S11 is plotted in Figure 9a, which
shows obvious strain gradients at both ends of the steel plate as well as the piezoelectric
substrate. Therefore, the steel plate needs to be large enough to ensure that the piezoelectric
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substrate falls in its uniform strain region. In addition, to ensure the accuracy of the
measurement of the strain sensor, the electrodes also need to be distributed in the uniform
strain region of the piezoelectric substrate. Taking the strain transfer rate as a reference, the
strain transfer characteristics of piezoelectric substrates under different thicknesses and
lengths (i.e., Z and X directions) are analyzed, and the results are shown in Figure 9b,c. The
expression of strain transfer rate σ is:

σ =
sLN
sst

(18)

where sst and sLN are the S11 component of strain tensors which belong to the upper surfaces
of the steel plate and LN substrate, respectively. In addition, regions with default strain
gradients ≤1% are defined as uniform strain regions (USRs).
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As Figure 9b illustrates, with the increase in LN thickness, the strain transfer rate and
the length of USR almost decrease linearly, indicating that the thicker the piezoelectric
substrate is, the less favorable the strain transfer and the smaller the sensitivity of the strain
sensor and the area available for electrode placement. Combined with the simulation results
in Figure 8d, the thickness of LN piezoelectric substrate is selected as 40 µm, and then the
length of LN is analyzed. As shown in Figure 9c, the strain transfer rate and the length of
the USR increase largely linearly with the increase in the length of LN, which indicates that
the larger the length of the piezoelectric substrate, the more conducive it will be to strain
transfer, thus increasing the sensitivity of the strain sensor and the region available for
placing electrodes. To avoid material waste, the size of the piezoelectric substrate should
be specified in combination with the area required by the electrodes.

According to the above simulation results, the optimized structural parameters (see
Table 6) of the dual-port SAW resonator based on LN is determined as follows:
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Table 6. Optimized structural parameters of a dual-port SAW resonator.

Parameter Value Parameter Value

λ (µm) 20 W (mm) 2.2
Nt 60 Ltt (µm) 10
Nr 30 Lrt (µm) 5
η 0.6 thLN (µm) 40

thAl (µm) 0.2 the size of the LN
(mm2) 7 × 3

The Q and IL of the dual-port SAW resonator used for strain sensing after structure
optimization are 538.49 and 5.47 dB, respectively. Compared with before optimization,
Q is increased by 15%, IL is decreased by 34.6% and strain transfer rate is increased by
2.4%, which fully demonstrate the significance of optimizing the structural parameters for
SAW devices.

5. Conclusions

In this work, we propose a FEM simulation scheme for the dual-port SAW resonator,
which is of great significance for the design and manufacture of various types of sensors
based on the dual-port SAW resonator. The structure parameters, including Nt, Nr, η, thAl,
W, Ltt, Lrt and thLN, are well optimized through eigenfrequency analysis, the frequency do-
main analysis as well as the steady state analysis. Compared with the experimental results
reported in the literature, the relative errors of RSAW eigenfrequency and IL are about 3%
and 16.3%, respectively, indicating that our simulation models are reasonable and accurate.
Compared with the simulation results of the full-sized 2D model (Figure 2b) under the
initial structural parameters, the dual-port SAW resonator Q increases by 15%, IL decreases
by 34.6% and strain transfer rate increases by 2.4% after structural optimization, which
indicates that this FEM simulation scheme can achieve an enhanced resonator performance.
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