Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = RASP inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 836 KB  
Review
Therapeutic Targets in Allergic Conjunctivitis
by Bisant A. Labib and DeGaulle I. Chigbu
Pharmaceuticals 2022, 15(5), 547; https://doi.org/10.3390/ph15050547 - 28 Apr 2022
Cited by 34 | Viewed by 12703
Abstract
Allergic conjunctivitis (AC) is a common condition resulting from exposure to allergens such as pollen, animal dander, or mold. It is typically mediated by allergen-induced crosslinking of immunoglobulin E attached to receptors on primed conjunctival mast cells, which results in mast cell degranulation [...] Read more.
Allergic conjunctivitis (AC) is a common condition resulting from exposure to allergens such as pollen, animal dander, or mold. It is typically mediated by allergen-induced crosslinking of immunoglobulin E attached to receptors on primed conjunctival mast cells, which results in mast cell degranulation and histamine release, as well as the release of lipid mediators, cytokines, and chemokines. The clinical result is conjunctival hyperemia, tearing, intense itching, and chemosis. Refractory and chronic cases can result in ocular surface complications that may be vision threatening. Patients who experience even mild forms of this disease report an impact on their quality of life. Current treatment options range from non-pharmacologic therapies to ocular and systemic options. However, to adequately control AC, the use of multiple agents is often required. As such, a precise understanding of the immune mechanisms responsible for this ocular surface inflammation is needed to support ongoing research for potential therapeutic targets such as chemokine receptors, cytokine receptors, non-receptor tyrosine kinases, and integrins. This review utilized several published articles regarding the current therapeutic options to treat AC, as well as the pathological and immune mechanisms relevant to AC. This review will also focus on cellular and molecular targets in AC, with particular emphasis on potential therapeutic agents that can attenuate the pathology and immune mechanisms driven by cells, receptors, and molecules that participate in the immunopathogenesis and immunopathology of AC. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Figure 1

32 pages, 1873 KB  
Review
Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion
by Eman A. Taha, Kisho Ono and Takanori Eguchi
Int. J. Mol. Sci. 2019, 20(18), 4588; https://doi.org/10.3390/ijms20184588 - 17 Sep 2019
Cited by 168 | Viewed by 15389
Abstract
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production [...] Read more.
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed. Full article
(This article belongs to the Special Issue Molecular Chaperones 2.0)
Show Figures

Graphical abstract

Back to TopTop