Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Pseudozyma sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5785 KiB  
Article
Optimization of Squalene Production by Pseudozyma sp. P4-22
by Chen Huang, Xiaojin Song, Jingyi Li, Qiu Cui, Pengfei Gu and Yingang Feng
Molecules 2025, 30(7), 1646; https://doi.org/10.3390/molecules30071646 - 7 Apr 2025
Viewed by 586
Abstract
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with [...] Read more.
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with enhanced squalene-producing ability, was obtained through atmospheric and room temperature plasma mutagenesis of the previously screened squalene-producing yeast Pseudozyma sp. SD301. The P4-22 strain demonstrated the ability to produce squalene using various carbon and nitrogen sources. We optimized the culture conditions by employing cost-effective corn steep liquor as the nitrogen source, and the optimal pH and sea salt concentration of the medium were determined to be 5.5 and 5 g/L, respectively. Under optimal cultivation conditions, the biomass and squalene production reached 64.42 g/L and 2.06 g/L, respectively, in a 5 L fed-batch fermentation. This study highlights the potential of Pseudozyma sp. P4-22 as a promising strain for commercial-scale production of squalene. Full article
(This article belongs to the Special Issue Biomanufacturing of Natural Bioactive Compounds)
Show Figures

Figure 1

11 pages, 1472 KiB  
Article
Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka
by Rose Meena Amirthanayagam Edward-Rajanayagam, José Alberto Narváez-Zapata, María del Socorro Ramírez-González, Erika Alicia de la Cruz-Arguijo, Melina López-Meyer and Claudia Patricia Larralde-Corona
Horticulturae 2023, 9(5), 573; https://doi.org/10.3390/horticulturae9050573 - 12 May 2023
Cited by 10 | Viewed by 2975
Abstract
Mexico is among the most important citrus fruit producers in the world. However, during storage, several problems related to fungi can arise. The most common fungal postharvest diseases detected on Citrus limon var Eureka (Italian lime) produced in the Tamaulipas state are green/blue [...] Read more.
Mexico is among the most important citrus fruit producers in the world. However, during storage, several problems related to fungi can arise. The most common fungal postharvest diseases detected on Citrus limon var Eureka (Italian lime) produced in the Tamaulipas state are green/blue mold (Penicillium spp.), fusarium rot (F. oxysporum, F. solaniF. proliferatum, among others), and anthracnose (Colletotrichum spp.). In this work, we selected yeasts, occurring as the natural epiphytic mycoflora of lemons or from fermented traditional products, to be tested as part of a formulation for protecting stored lemons against fungal diseases. The best-performing yeasts, labeled as LCBG-03 (Meyerozyma guilliermondii), LCBG-30 (Pseudozyma sp.), and LCBG-49 (Saccharomyces cerevisiae), were selected to test their compatibility and biocontrol performance against strains of Penicillium digitatum (AL-38), Fusarium sp. (AL-21), Colletotrichum gloeosporioides (AL-13), and Epicoccum sorghinum (H3A). Based on their in vitro performance regarding the percentage of radial growth inhibition, both applied individually or as two yeasts mixed at equal cellular concentrations, the best combinations (containing M. guilliermondii formulated with either Pseudozyma sp. or S. cerevisiae) were selected with efficacies higher than 95% in both in vitro fungal radial growth rate inhibition and on stored lemon fruits. This work contributes to the search for compatible yeast combinations with the aim to diminish the fungal losses of citrus fruits using biocontrol for citrus postharvest protection. Full article
(This article belongs to the Special Issue Advances in Postharvest Disease Management in Fruits and Vegetables)
Show Figures

Figure 1

16 pages, 1766 KiB  
Article
Biological Control of Fruit Rot and Anthracnose of Postharvest Mango by Antagonistic Yeasts from Economic Crops Leaves
by Wilasinee Konsue, Tida Dethoup and Savitree Limtong
Microorganisms 2020, 8(3), 317; https://doi.org/10.3390/microorganisms8030317 - 25 Feb 2020
Cited by 77 | Viewed by 13380
Abstract
To select antagonistic yeasts for the control of fruit rot caused by Lasiodiplodia theobromae and anthracnose caused by Colletotrichum gloeosporioides in postharvest mango fruit, 307 yeast strains isolated from plant leaves were evaluated for their antagonistic activities against these two fungal pathogens in [...] Read more.
To select antagonistic yeasts for the control of fruit rot caused by Lasiodiplodia theobromae and anthracnose caused by Colletotrichum gloeosporioides in postharvest mango fruit, 307 yeast strains isolated from plant leaves were evaluated for their antagonistic activities against these two fungal pathogens in vitro. Torulaspora indica DMKU-RP31, T. indica DMKU-RP35 and Pseudozyma hubeiensis YE-21 were found to inhibit the growth of L. theobromae whereas only Papiliotrema aspenensis DMKU-SP67 inhibited the growth of C. gloeosporioides. Antagonistic mechanisms of these four antagonistic yeasts in vitro consisted of the production of antifungal volatile organic compounds (VOCs), biofilm formation and siderophore production. T. indica DMKU-RP35 was the most effective strain in controlling fruit rot on postharvest mango fruits. Its action was comparable to that of the fungicide, benomyl, reducing the disease severity by 82.4%, whereas benomyl revealed 87.5% reduction. P. aspenensis DMKU-SP67 reduced anthracnose severity by 94.1%, which was comparable to that of using benomyl (93.9%). The antifungal VOCs produced by these yeast strains also reduced the severity of these diseases on postharvest mango fruits but at lower rates than using yeast cells. Therefore, these antagonistic yeasts have the potential for use as biological control agents for the control of fruit rot and anthracnose diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop