Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Pseudomonas aeruginosa bacteriophages diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1145 KiB  
Perspective
Killing Two Crises with One Spark: Cold Plasma for Antimicrobial Resistance Mitigation and Wastewater Reuse
by José Gonçalves, João Pequeno, Israel Diaz, Davor Kržišnik, Jure Žigon and Tom Koritnik
Water 2025, 17(8), 1218; https://doi.org/10.3390/w17081218 - 18 Apr 2025
Viewed by 1004
Abstract
Global water scarcity and antimicrobial resistance (AMR) represent two escalating crises that urgently demand integrated and effective solutions. While wastewater reuse is increasingly promoted as a strategy to alleviate water scarcity, conventional treatment processes often fail to eliminate persistent contaminants and antibiotic-resistant microorganisms. [...] Read more.
Global water scarcity and antimicrobial resistance (AMR) represent two escalating crises that urgently demand integrated and effective solutions. While wastewater reuse is increasingly promoted as a strategy to alleviate water scarcity, conventional treatment processes often fail to eliminate persistent contaminants and antibiotic-resistant microorganisms. Cold plasma (CP), a non-thermal advanced oxidation process, has demonstrated the strong potential to simultaneously inactivate pathogens and degrade micropollutants. CP generates a diverse mix of reactive oxygen and nitrogen species (ROS and RNS), as well as UV photons and charged particles, capable of breaking down complex contaminants and inducing irreversible damage to microbial cells. Laboratory studies have reported bacterial log reductions ranging from 1 to >8–9 log10, with Gram-negative species such as E. coli and Pseudomonas aeruginosa showing higher susceptibility than Gram-positive bacteria. The inactivation of endospores and mixed-species biofilms has also been achieved under optimized CP conditions. Viral inactivation studies, including MS2 bacteriophage and norovirus surrogates, have demonstrated reductions >99.99%, with exposure times as short as 0.12 s. CP has further shown the capacity to degrade antibiotic residues such as ciprofloxacin and sulfamethoxazole by >90% and to reduce ARGs (e.g., bla, sul, and tet) in hospital wastewater. This perspective critically examines the mechanisms and current applications of CP in wastewater treatment, identifies the operational and scalability challenges, and outlines a research agenda for integrating CP into future water reuse frameworks targeting AMR mitigation and sustainable water management. Full article
Show Figures

Figure 1

25 pages, 5361 KiB  
Article
Genomic Insights into and Lytic Potential of Native Bacteriophages M8-2 and M8-3 Against Clinically Relevant Multidrug-Resistant Pseudomonas aeruginosa
by Francisco Ricardo Rodríguez-Recio, Javier Alberto Garza-Cervantes, Francisco de Jesús Balderas-Cisneros and José Rubén Morones-Ramírez
Antibiotics 2025, 14(2), 110; https://doi.org/10.3390/antibiotics14020110 - 21 Jan 2025
Cited by 1 | Viewed by 2576
Abstract
Background/Objectives: Antibiotic resistance in pathogenic bacteria poses a critical global health threat, with multidrug-resistant (MDR) strains increasingly undermining conventional treatments. Among these, Pseudomonas aeruginosa is a high-priority pathogen due to its resistance to carbapenems and frequent presence in hospital settings, contributing to severe [...] Read more.
Background/Objectives: Antibiotic resistance in pathogenic bacteria poses a critical global health threat, with multidrug-resistant (MDR) strains increasingly undermining conventional treatments. Among these, Pseudomonas aeruginosa is a high-priority pathogen due to its resistance to carbapenems and frequent presence in hospital settings, contributing to severe healthcare-associated infections. This study aimed to isolate and characterize novel bacteriophages from environmental wastewater samples that could specifically target MDR P. aeruginosa. Methods: Two bacteriophages, M8-2 and M8-3, were isolated from wastewater in Monterrey, Mexico. A genomic analysis classified M8-2 and M8-3 within the Caudoviridae family, and next-generation sequencing (NGS) was used to confirm the absence of undesirable antibiotic resistance or virulence genes. Optimization of viral amplification was performed to achieve high titers, with structural proteins characterized by SDS-PAGE. Results: Phages M8-2 and M8-3 exhibited specific lytic activity against MDR strains of P. aeruginosa, offering a targeted approach to combat antibiotic-resistant infections. High genetic similarity (>95%) to known Gram-negative bacterial phages was observed. Optimized viral amplification yielded titers of 4.2 × 107 and 1.03 × 109 PFUs/mL for M8-2 and M8-3, respectively. The specificity of these phages minimized disruption to the host microbiome, and their significant efficacy in suppressing bacterial growth positions bacteriophages as promising candidates for localized and personalized phage therapy, especially in chronic and hospital-acquired infection settings. Conclusions: These findings highlight the therapeutic potential of M8-2 and M8-3 in addressing antibiotic-resistant P. aeruginosa infections. Their safety profile, high target specificity, and robust lytic activity underscore the feasibility of incorporating phage-based strategies into current antimicrobial protocols. This study contributes to the broader goal of developing sustainable and effective phage therapies for diverse clinical and environmental contexts. Full article
(This article belongs to the Special Issue Evaluation of Emerging Antimicrobials)
Show Figures

Figure 1

22 pages, 10450 KiB  
Article
Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2
by Boris Parra, Maximiliano Sandoval, Vicente Arriagada, Luis Amsteins, Cristobal Aguayo, Andrés Opazo-Capurro, Arnaud Dechesne and Gerardo González-Rocha
Pharmaceuticals 2024, 17(12), 1616; https://doi.org/10.3390/ph17121616 - 30 Nov 2024
Cited by 1 | Viewed by 2117
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. Methods: We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. Results: Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. Conclusions: Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy. Full article
(This article belongs to the Special Issue Phage Discovery and Phage Therapy)
Show Figures

Figure 1

14 pages, 2008 KiB  
Article
Combinations of Bacteriophage Are Efficacious against Multidrug-Resistant Pseudomonas aeruginosa and Enhance Sensitivity to Carbapenem Antibiotics
by Christopher J. Kovacs, Erika M. Rapp, William R. Rankin, Sophia M. McKenzie, Brianna K. Brasko, Katherine E. Hebert, Beth A. Bachert, Andrew R. Kick, F. John Burpo and Jason C. Barnhill
Viruses 2024, 16(7), 1000; https://doi.org/10.3390/v16071000 - 21 Jun 2024
Cited by 7 | Viewed by 2895
Abstract
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy [...] Read more.
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge. Full article
(This article belongs to the Special Issue Phage-Bacteria Interplay in Health and Disease, Second Edition)
Show Figures

Figure 1

13 pages, 4059 KiB  
Article
Quorum Quenching Nanofibers for Anti-Biofouling Applications
by Amos Taiswa, Jessica M. Andriolo, M. Katie Hailer and Jack L. Skinner
Coatings 2024, 14(1), 70; https://doi.org/10.3390/coatings14010070 - 4 Jan 2024
Cited by 2 | Viewed by 3747
Abstract
Biofilms, complex microbial communities, adept at forming on diverse surfaces within environments, such as membrane technologies, ship hulls, medical devices, and clinical infections, pose persistent challenges. While various biofilm prevention methods, including antimicrobial coatings, physical barriers, and bacteriophage utilization, have been devised for [...] Read more.
Biofilms, complex microbial communities, adept at forming on diverse surfaces within environments, such as membrane technologies, ship hulls, medical devices, and clinical infections, pose persistent challenges. While various biofilm prevention methods, including antimicrobial coatings, physical barriers, and bacteriophage utilization, have been devised for engineered systems, their efficacy fluctuates based on application type and microbial species. Consequently, there remains a pressing need for the development of highly targeted and efficient biofilm control strategies tailored to specific applications remains a pressing need. In our investigation, we disrupt microbial cell-to-cell communication in Pseudomonas aeruginosa through the application of anti-quorum sensing (anti-QS) furanone C-30 molecules. The incorporation of these molecules onto electrospun surfaces yielded substantial reductions of 69% in petri dish assays and 58% on mixed cellulose ester (MCE) membranes in a dead-end nanofiltration system, showcasing the potent anti-biofouling impact. Notably, the functionalization of MCE surfaces with anti-QS molecules resulted in a remarkable 16.7% improvement in filtration output. These findings underscore the potential of this targeted approach to mitigate biofilm formation, offering a technical foundation for advancing tailored strategies in the ongoing pursuit of effective and application-specific biofilm control measures. Full article
Show Figures

Graphical abstract

17 pages, 10930 KiB  
Article
Analysis of Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis Revealed Novel Groups of Filamentous Bacteriophages
by Peter Evseev, Julia Bocharova, Dmitriy Shagin and Igor Chebotar
Viruses 2023, 15(11), 2215; https://doi.org/10.3390/v15112215 - 5 Nov 2023
Cited by 3 | Viewed by 2475
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in humans, especially in hospital patients with compromised host defence mechanisms, including patients with cystic fibrosis. Filamentous bacteriophages represent a group of single-stranded DNA viruses infecting different bacteria, including P. aeruginosa and other [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in humans, especially in hospital patients with compromised host defence mechanisms, including patients with cystic fibrosis. Filamentous bacteriophages represent a group of single-stranded DNA viruses infecting different bacteria, including P. aeruginosa and other human and animal pathogens; many of them can replicate when integrated into the bacterial chromosome. Filamentous bacteriophages can contribute to the virulence of P. aeruginosa and influence the course of the disease. There are just a few isolated and officially classified filamentous bacteriophages infecting P. aeruginosa, but genomic studies indicated the frequent occurrence of integrated prophages in many P. aeruginosa genomes. An analysis of sequenced genomes of P. aeruginosa isolated from upper respiratory tract (throat and nasal swabs) and sputum specimens collected from Russian patients with cystic fibrosis indicated a higher diversity of filamentous bacteriophages than first thought. A detailed analysis of predicted bacterial proteins revealed prophage regions representing the filamentous phages known to be quite distantly related to known phages. Genomic comparisons and phylogenetic studies enabled the proposal of several new taxonomic groups of filamentous bacteriophages. Full article
(This article belongs to the Special Issue Virus Discovery, Classification and Characterization)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Identification, Characterization, and Genome Analysis of Two Novel Temperate Pseudomonas protegens Phages PseuP_222 and PseuP_224
by Vera Morozova, Yuliya Kozlova, Artem Tikunov, Igor Babkin, Tatyana Ushakova, Alevtina Bardasheva, Ghadeer Jdeed, Elena Zhirakovskaya, Alina Mogileva, Sergei Netesov and Nina Tikunova
Microorganisms 2023, 11(6), 1456; https://doi.org/10.3390/microorganisms11061456 - 31 May 2023
Cited by 3 | Viewed by 2601
Abstract
Two novel P. protegens bacteriophages PseuP_222 and Pseu_224 and their host P. protegens CEMTC 4060 were isolated from the same sample (Inya river, Siberia). Both phages have siphovirus morphology and belong to lambdoid phages. Comparative genome analysis revealed a low nucleotide and amino [...] Read more.
Two novel P. protegens bacteriophages PseuP_222 and Pseu_224 and their host P. protegens CEMTC 4060 were isolated from the same sample (Inya river, Siberia). Both phages have siphovirus morphology and belong to lambdoid phages. Comparative genome analysis revealed a low nucleotide and amino acid sequence similarity of PseuP_222 and PseuP_224 between themselves, and between them and other lambdoid phages. Bioinformatics analysis indicated that PseuP_222 and PseuP_224 are members of a genetically diverse group of phages of environmental Pseudomonas spp.; this group is distant from a large group of P. aeruginosa phages. In phylogenetic trees, the positioning of the terminase large subunits, major capsid proteins, tail tape measure proteins, and CI-like repressors of PseuP_222 and PseuP_224 were remote and changed relative to those of the Escherichia lambda phage and lambdoid phages of Pseudomonas spp. However, the nucleoid-associated protein NdpA/YejK and P5-like structural protein from both phages showed high similarity and were not found in lambda phage and other lambdoid phages of Pseudomonas spp. Substantial divergences of the PseuP_222 and PseuP_224 genomes and proteomes indicated that the evolutionary history of these phages was mostly independent and they probably began to use one host only recently. Full article
(This article belongs to the Special Issue Bacteriophage Genomics 2.0)
Show Figures

Figure 1

15 pages, 2673 KiB  
Article
The Mycobacteriophage Ms6 LysB N-Terminus Displays Peptidoglycan Binding Affinity
by Adriano M. Gigante, Francisco Olivença, Maria João Catalão, Paula Leandro, José Moniz-Pereira, Sérgio R. Filipe and Madalena Pimentel
Viruses 2021, 13(7), 1377; https://doi.org/10.3390/v13071377 - 15 Jul 2021
Cited by 7 | Viewed by 4203
Abstract
Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic [...] Read more.
Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG. Full article
(This article belongs to the Special Issue Advances in Bacteriophage Biology)
Show Figures

Figure 1

24 pages, 5994 KiB  
Article
Bacteriophage-Based Biosensing of Pseudomonas aeruginosa: An Integrated Approach for the Putative Real-Time Detection of Multi-Drug-Resistant Strains
by Liliam K. Harada, Waldemar Bonventi Júnior, Erica C. Silva, Thais J. Oliveira, Fernanda C. Moreli, José M. Oliveira Júnior, Matthieu Tubino, Marta M. D. C. Vila and Victor M. Balcão
Biosensors 2021, 11(4), 124; https://doi.org/10.3390/bios11040124 - 15 Apr 2021
Cited by 13 | Viewed by 4610
Abstract
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections [...] Read more.
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper. Full article
(This article belongs to the Special Issue Microbial Toxins and Pathogen Biodetection)
Show Figures

Figure 1

16 pages, 2344 KiB  
Article
Broad Bactericidal Activity of the Myoviridae Bacteriophage Lysins LysAm24, LysECD7, and LysSi3 against Gram-Negative ESKAPE Pathogens
by Nataliia P. Antonova, Daria V. Vasina, Anastasiya M. Lendel, Evgeny V. Usachev, Valentine V. Makarov, Alexander L. Gintsburg, Artem P. Tkachuk and Vladimir A. Gushchin
Viruses 2019, 11(3), 284; https://doi.org/10.3390/v11030284 - 21 Mar 2019
Cited by 74 | Viewed by 6848
Abstract
The extremely rapid spread of multiple-antibiotic resistance among Gram-negative pathogens threatens to move humankind into the so-called “post-antibiotic era” in which the most efficient and safe antibiotics will not work. Bacteriophage lysins represent promising alternatives to antibiotics, as they are capable of digesting [...] Read more.
The extremely rapid spread of multiple-antibiotic resistance among Gram-negative pathogens threatens to move humankind into the so-called “post-antibiotic era” in which the most efficient and safe antibiotics will not work. Bacteriophage lysins represent promising alternatives to antibiotics, as they are capable of digesting bacterial cell wall peptidoglycans to promote their osmotic lysis. However, relatively little is known regarding the spectrum of lysin bactericidal activity against Gram-negative bacteria. In this study, we present the results of in vitro activity assays of three putative and newly cloned Myoviridae bacteriophage endolysins (LysAm24, LysECD7, and LysSi3). The chosen proteins represent lysins with diverse domain organization (single-domain vs. two-domain) and different predicted mechanisms of action (lysozyme vs. peptidase). The enzymes were purified, and their properties were characterized. The enzymes were tested against a panel of Gram-negative clinical bacterial isolates comprising all Gram-negative representatives of the ESKAPE group. Despite exhibiting different structural organizations, all of the assayed lysins were shown to be capable of lysing Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Salmonella typhi strains. Less than 50 μg/mL was enough to eradicate growing cells over more than five orders of magnitude. Thus, LysAm24, LysECD7, and LysSi3 represent promising therapeutic agents for drug development. Full article
(This article belongs to the Special Issue Biotechnological Applications of Phage and Phage-Derived Proteins)
Show Figures

Figure 1

39 pages, 679 KiB  
Review
A Genetic Approach to the Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections
by Victor Krylov, Olga Shaburova, Sergey Krylov and Elena Pleteneva
Viruses 2013, 5(1), 15-53; https://doi.org/10.3390/v5010015 - 21 Dec 2012
Cited by 47 | Viewed by 38875
Abstract
Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for [...] Read more.
Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent (“lytic”) and temperate (“lysogenic”) bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate) phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT), and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine. Full article
(This article belongs to the Special Issue Recent Progress in Bacteriophage Research)
Show Figures

Figure 1

Back to TopTop