Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Pseudodiaptomus annandalei

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1259 KB  
Article
Iron Fertilization Can Enhance the Mass Production of Copepod, Pseudodiaptomus annandalei, for Fish Aquaculture
by Guo-Kai Hong, Jimmy Kuo and Kwee Siong Tew
Life 2023, 13(2), 529; https://doi.org/10.3390/life13020529 - 15 Feb 2023
Cited by 5 | Viewed by 3533
Abstract
Copepods are proven nutritious food sources for the mariculture/larviculture industry, however, unreliable methods for mass production of copepods are a major bottleneck. In this study, we modified a previously reported inorganic fertilization method (N: 700 μg L−1 and P: 100 μg L [...] Read more.
Copepods are proven nutritious food sources for the mariculture/larviculture industry, however, unreliable methods for mass production of copepods are a major bottleneck. In this study, we modified a previously reported inorganic fertilization method (N: 700 μg L−1 and P: 100 μg L−1) by the addition of iron (Fe: 10 μg L−1, using FeSO4·7H2O) (+Fe treatment) and compared its suitability for copepod culture (Pseudodiaptomus annandalei) to the original method (control). The experiment was conducted outdoors in 1000 L tanks for 15 days. The addition of iron prolonged the growth phase of the phytoplankton and resulted in the production of significantly more small phytoplankton (0.45–20 μm, average 2.01 ± 0.52 vs. 9.03 ± 4.17 µg L−1 in control and +Fe, respectively) and adult copepods (control: 195 ± 35, +Fe: 431 ± 109 ind L−1), whereas copepodid-stage was similar between treatments (control: 511 ± 107 vs. +Fe: 502 ± 68 ind L−1). Although adding iron increased the cost of production by 23% compared to the control, the estimated net profit was 97% greater. We concluded that inorganic fertilization, with the addition of iron (Fe: 10 μg L−1), could be an effective method for the mass production of copepods for larviculture. Full article
(This article belongs to the Special Issue Innovative Aquaculture and Fish Reproduction)
Show Figures

Figure 1

13 pages, 3357 KB  
Article
The Advantages of Inorganic Fertilization for the Mass Production of Copepods as Food for Fish Larvae in Aquaculture
by Guo-Kai Hong and Kwee Siong Tew
Life 2022, 12(3), 441; https://doi.org/10.3390/life12030441 - 17 Mar 2022
Cited by 8 | Viewed by 4752
Abstract
Copepods are commonly used as live feed for cultured fish larvae, but the current mass production method using organic fertilizers cannot meet the market demand for copepods. We evaluated the feasibility of applying an inorganic fertilization method, which is currently in use in [...] Read more.
Copepods are commonly used as live feed for cultured fish larvae, but the current mass production method using organic fertilizers cannot meet the market demand for copepods. We evaluated the feasibility of applying an inorganic fertilization method, which is currently in use in freshwater and marine larviculture, to the mass production of copepods. For 30 days, and with five replicates of each treatment, we made comparative daily measurements of various parameters of (1) copepod cultures fertilized with commercially available condensed fish solubles (organic fertilization) and (2) other cultures in which the concentration of inorganic phosphorus was maintained at 100 μg P L−1 and that of inorganic nitrogen at 700 μg N L−1 (inorganic fertilization). With inorganic fertilization, pH fluctuated over a smaller range and much less filamentous algae grew in the tanks. The mean production of copepod nauplii over the course of the study was similar between the two treatments, but the combined density of copepodites and adult copepods was significantly higher with inorganic fertilization. Compared to commercial zooplankton products, copepods cultured with inorganic fertilization were smaller, were mixed with fewer (almost none) non-copepod contaminants, were also pathogen-free, and could be produced at the cheapest cost per unit output. Based on these results, we conclude that the inorganic fertilization method can profitably be adopted by commercial copepod producers to meet the demand from fish farmers, especially for small-sized copepods. Full article
(This article belongs to the Special Issue Strategies and Approaches for Improvement of Aquaculture)
Show Figures

Figure 1

Back to TopTop