Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Prolactin releasing-peptide (PrRP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12271 KiB  
Article
Prolactin-Releasing Peptide System as a Potential Mechanism of Stress Coping: Studies in Male Rats
by Evelin Szabó, Viktória Kormos, Zsuzsanna E. Tóth, Dóra Zelena and Anita Kovács
Int. J. Mol. Sci. 2025, 26(9), 4155; https://doi.org/10.3390/ijms26094155 - 27 Apr 2025
Viewed by 639
Abstract
Prolactin-releasing peptide (PrRP) has a regulatory role in both acute and chronic stress, suggesting its potential contribution to stress-related disorders such as depression. However, not all individuals with depression respond equally to stressors. We aimed to determine whether the PrRP system could underlie [...] Read more.
Prolactin-releasing peptide (PrRP) has a regulatory role in both acute and chronic stress, suggesting its potential contribution to stress-related disorders such as depression. However, not all individuals with depression respond equally to stressors. We aimed to determine whether the PrRP system could underlie stress coping, an important aspect of depression. The forced swim test was used both as a stressor and as a method to assess coping strategy. Based on immobility time, active coping and passive coping subgroups were identified, and 10 brain regions were studied using qPCR to measure the mRNA expression levels of PrRP and its receptors (specific: GPR10; non-specific: NPFFR2). Passive coping animals spent more time in an immobile posture and exhibited altered mRNA expression levels in the medullary A1 region, the habenula, and the arcuate nucleus than control or active coping rats. Additionally, we identified corticotropin-releasing hormone and vesicular glutamate transporter 2 positive neurons in the A1 medullary region that contained Prrp, suggesting a modulatory role of PrRP in these excitatory neurons involved in stress regulation. Our findings reinforce the hypothesis that PrRP plays a role in stress coping, a process closely linked to depression. However its effect is brain region-specific. Full article
(This article belongs to the Special Issue Depression: From Molecular Basis to Therapy—2nd Edition)
Show Figures

Figure 1

15 pages, 5551 KiB  
Article
Liquid Biopsy in Alzheimer’s Disease Patients Reveals Epigenetic Changes in the PRLHR Gene
by Mónica Macías, Blanca Acha, Jon Corroza, Amaya Urdánoz-Casado, Miren Roldan, Maitane Robles, Javier Sánchez-Ruiz de Gordoa, María Elena Erro, Ivonne Jericó, Idoia Blanco-Luquin and Maite Mendioroz
Cells 2023, 12(23), 2679; https://doi.org/10.3390/cells12232679 - 22 Nov 2023
Cited by 9 | Viewed by 2306
Abstract
In recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer’s disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients’ lifetimes. In a previous methylome performed in the hippocampus of [...] Read more.
In recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer’s disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients’ lifetimes. In a previous methylome performed in the hippocampus of 26 AD patients and 12 controls, we found higher methylation levels in AD patients in the promoter region of PRLHR, a gene involved in energy balance regulation. Our aim was to further characterize PRLHR’s role in AD and to evaluate if the liquid biopsy technique would provide life access to this brain information in a non-invasive way. First, we extended the methylation mapping of PRLHR and validated previous methylome results via bisulfite cloning sequencing. Next, we observed a positive correlation between PRLHR methylation levels and AD-related neuropathological changes and a decreased expression of PRLHR in AD hippocampus. Then, we managed to replicate the hippocampal methylation differences in plasma cfDNA from an additional cohort of 35 AD patients and 35 controls. The isolation of cfDNA from the plasma of AD patients may constitute a source of potential epigenetic biomarkers to aid AD clinical management. Full article
(This article belongs to the Special Issue Liquid Biopsy Components in Neurological Diseases)
Show Figures

Graphical abstract

22 pages, 6403 KiB  
Article
Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance
by Lucia Mráziková, Silvie Hojná, Petra Vaculová, Štěpán Strnad, Vladimír Vrkoslav, Helena Pelantová, Marek Kuzma, Blanka Železná, Jaroslav Kuneš and Lenka Maletínská
Nutrients 2023, 15(2), 280; https://doi.org/10.3390/nu15020280 - 5 Jan 2023
Cited by 7 | Viewed by 3878
Abstract
Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral [...] Read more.
Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral administration. This analog acted as an anti-obesity and glucose-lowering agent, attenuating lipogenesis in rats and mice with high-fat (HF) diet-induced obesity. In Wistar Kyoto (WKY) rats fed a HF diet for 52 weeks, we explored glucose intolerance, but also prediabetes, liver steatosis and insulin resistance-related changes, as well as neuroinflammation in the brain. A potential beneficial effect of 6 weeks of treatment with palm11-PrRP31 and liraglutide as comparator was investigated. Liver lipid profiles, as well as urinary and plasma metabolomic profiles, were measured by lipidomics and metabolomics, respectively. Old obese WKY rats showed robust glucose intolerance that was attenuated by palm11-PrRP31, but not by liraglutide treatment. On the contrary, liraglutide had a beneficial effect on insulin resistance parameters. Despite obesity and prediabetes, WKY rats did not develop steatosis owing to HF diet feeding, even though liver lipogenesis was enhanced. Plasma triglycerides and cholesterol were not increased by HFD feeding, which points to unincreased lipid transport from the liver. The liver lipid profile was significantly altered by a HF diet that remained unaffected by palm11-PrRP31 or liraglutide treatment. The HF-diet-fed WKY rats revealed astrogliosis in the brain cortex and hippocampus, which was attenuated by treatment. In conclusion, this study suggested multiple beneficial anti-obesity-related effects of palm11-PrRP31 and liraglutide in both the periphery and brain. Full article
(This article belongs to the Special Issue The Impact of Nutrition on Brain Metabolism and Disease)
Show Figures

Figure 1

20 pages, 4189 KiB  
Article
Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study
by Alena Karnošová, Veronika Strnadová, Lucie Holá, Blanka Železná, Jaroslav Kuneš and Lenka Maletínská
Int. J. Mol. Sci. 2021, 22(16), 8904; https://doi.org/10.3390/ijms22168904 - 18 Aug 2021
Cited by 13 | Viewed by 3188
Abstract
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) [...] Read more.
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects. Full article
(This article belongs to the Special Issue Neuropeptides in Food Intake Regulation)
Show Figures

Figure 1

46 pages, 14422 KiB  
Article
Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages
by Yulong Sun, Zhuo Zuo and Yuanyuan Kuang
Int. J. Mol. Sci. 2021, 22(9), 4456; https://doi.org/10.3390/ijms22094456 - 24 Apr 2021
Cited by 6 | Viewed by 3063
Abstract
Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully [...] Read more.
Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully elucidated. Here, we investigated the effect of PrRP on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) with RNA sequencing, bioinformatics, and molecular simulation. BMDMs were exposed to PrRP (18 h) and were subjected to RNA sequencing. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. Eight qPCR-validated DEGs were chosen as hub genes. Next, the three-dimensional structures of the proteins encoded by these hub genes were modeled by Rosetta and Modeller, followed by molecular dynamics simulation by the Gromacs program. Finally, the binding modes between PrRP and hub proteins were investigated with the Rosetta program. PrRP showed no noticeable effect on the morphology of macrophages. A total of 410 DEGs were acquired, and PrRP regulated multiple BMDM-mediated functional pathways. Besides, the possible docking modes between PrRP and hub proteins were investigated. Moreover, GPR10 was expressed on the cell membrane of BMDMs, which increased after PrRP exposure. Collectively, PrRP significantly changed the transcriptome profile of BMDMs, implying that PrRP may be involved in various physiological activities mastered by macrophages. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

20 pages, 4347 KiB  
Article
Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells
by Anna Zmeškalová, Andrea Popelová, Aneta Exnerová, Blanka Železná, Jaroslav Kuneš and Lenka Maletínská
Int. J. Mol. Sci. 2020, 21(17), 6343; https://doi.org/10.3390/ijms21176343 - 1 Sep 2020
Cited by 8 | Viewed by 3694
Abstract
Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). [...] Read more.
Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). Recently, the neuroprotective effects of lipidized PrRP analogs have been proven. In this study, we focused on the molecular mechanisms of action of natural PrRP31 and its lipidized analog palm11-PrRP31 in the human neuroblastoma cell line SH-SY5Y to describe their cellular signaling and possible anti-apoptotic properties. PrRP31 significantly upregulated the phosphoinositide-3 kinase-protein kinase B/Akt (PI3K-PKB/Akt) and extracellular signal-regulated kinase/cAMP response element-binding protein (ERK-CREB) signaling pathways that promote metabolic cell survival and growth. In addition, we proved via protein kinase inhibitors that activation of signaling pathways is mediated specifically by PrRP31 and its palmitoylated analog. Furthermore, the potential neuroprotective properties were studied through activation of anti-apoptotic pathways of PrRP31 and palm11-PrRP31 using the SH-SY5Y cell line and rat primary neuronal culture stressed with toxic methylglyoxal (MG). The results indicate increased viability of the cells treated with PrRP and palm11-PrRP31 and a reduced degree of apoptosis induced by MG, suggesting their potential use in the treatment of neurological disorders. Full article
(This article belongs to the Special Issue Neuropeptides in Food Intake Regulation)
Show Figures

Figure 1

22 pages, 1631 KiB  
Review
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties
by Veronika Pražienková, Andrea Popelová, Jaroslav Kuneš and Lenka Maletínská
Int. J. Mol. Sci. 2019, 20(21), 5297; https://doi.org/10.3390/ijms20215297 - 24 Oct 2019
Cited by 31 | Viewed by 9188
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, [...] Read more.
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored. Full article
(This article belongs to the Special Issue Peptides for Health Benefits 2019)
Show Figures

Figure 1

Back to TopTop