Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Pm SFB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3861 KiB  
Article
Effect of Multiple Rounds of Enrichment on Metabolite Accumulation and Microbiota Composition of Pit Mud for Baijiu Fermentation
by Dong Li, Guangbin Ye, Xuyan Zong and Wei Zou
Foods 2023, 12(8), 1594; https://doi.org/10.3390/foods12081594 - 9 Apr 2023
Cited by 5 | Viewed by 2241
Abstract
Pit mud (PM) is the main component of Baijiu (traditional Chinese liquor), and its microorganisms are the primary sources of the aroma of Chinese strong-flavor Baijiu (SFB). Enrichment plays an important role in the selection of functional microorganisms in PM. Herein, the PM [...] Read more.
Pit mud (PM) is the main component of Baijiu (traditional Chinese liquor), and its microorganisms are the primary sources of the aroma of Chinese strong-flavor Baijiu (SFB). Enrichment plays an important role in the selection of functional microorganisms in PM. Herein, the PM of SFB was submitted to six rounds of enrichment using clostridial growth medium (CGM), and changes in the metabolite accumulation and microbiota composition were evaluated. Based on the metabolite production and microbiota composition, the enrichment rounds were classified as the acclimation stage (round 2), main fermentation stage (rounds 3 and 4), and late fermentation stage (rounds 5 and 6). Species within the genus Clostridium dominated in the acclimation stage (65.84–74.51%). In the main fermentation stage, the dominant microbial groups were producers of butyric acid, acetic acid, and caproic acid, which included Clostridium (45.99–74.80%), Caproicibacter (1.45–17.02%), and potential new species within the order of Oscillataceae (14.26–29.10%). In the late stage of enrichment, Pediococcus dominated (45.96–79.44%). Thus, the main fermentation stage can be considered optimal for the isolation of acid-producing bacteria from PM. The findings discussed herein support the development and application of functional bacteria by bioaugmentation, and contribute to improving the quality of PM and SFB production. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

18 pages, 6442 KiB  
Article
Bayesian-Based Hybrid Method for Rapid Optimization of NV Center Sensors
by Jiazhao Tian, Ressa S. Said, Fedor Jelezko, Jianming Cai and Liantuan Xiao
Sensors 2023, 23(6), 3244; https://doi.org/10.3390/s23063244 - 19 Mar 2023
Cited by 4 | Viewed by 2857
Abstract
NV centers are among the most promising platforms in the field of quantum sensing. Magnetometry based on NV centers, especially, has achieved concrete development in areas of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide inhomogeneous broadening and [...] Read more.
NV centers are among the most promising platforms in the field of quantum sensing. Magnetometry based on NV centers, especially, has achieved concrete development in areas of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide inhomogeneous broadening and fieldamplitude drift is a crucial issue of continuous concern that relies on the coherent control of NV centers with high average fidelity. Quantum optimal control (QOC) methods provide access to this target; nevertheless, the high time consumption of current methods due to the large number of needful sample points as well as the complexity of the parameter space has hindered their usability. In this paper, we propose the Bayesian estimation phase-modulated (B-PM) method to tackle this problem. In the case of the state transforming of an NV center ensemble, the B-PM method reduced the time consumption by more than 90% compared with the conventional standard Fourier basis (SFB) method while increasing the average fidelity from 0.894 to 0.905. In the AC magnetometry scenario, the optimized control pulse obtained with the B-PM method achieved an eight-fold extension of coherence time T2 compared with the rectangular π pulse. Similar application can be made in other sensing situations. As a general algorithm, the B-PM method can be further extended to the open- and closed-loop optimization of complex systems based on a variety of quantum platforms. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

15 pages, 4051 KiB  
Article
A Key Study on Pollen-Specific SFB Genotype and Identification of Novel SFB Alleles from 48 Accessions in Japanese Apricot (Prunus mume Sieb. et Zucc.)
by Daouda Coulibaly, Guofeng Hu, Zhaojun Ni, Kenneth Omondi Ouma, Xiao Huang, Shahid Iqbal, Chengdong Ma, Ting Shi, Faisal Hayat, Benjamin Karikari and Zhihong Gao
Forests 2022, 13(9), 1388; https://doi.org/10.3390/f13091388 - 31 Aug 2022
Cited by 1 | Viewed by 2038
Abstract
Self-incompatibility (SI) is a common strategy to avoid inbreeding and, consequently, keep genetic diversity within a species. In its mechanism, pollen rejection happens in the style when the single multiallelic locus (SFB in prunus species) of the haploid pollen matches one of [...] Read more.
Self-incompatibility (SI) is a common strategy to avoid inbreeding and, consequently, keep genetic diversity within a species. In its mechanism, pollen rejection happens in the style when the single multiallelic locus (SFB in prunus species) of the haploid pollen matches one of the S-alleles existing in the diploid pistil. The SFB gene for the pollen S gene has been identified in many Prunus species. However, Japanese apricot is a species with a typical gametophytic self-incompatibility (GSI), and its SFB alleles available are limited, although they are required for studying GSI. Therefore, we used an AS-PCR amplification method, sequencing, and the pair primers SFB-C1F and Pm-Vb designed based on the conserved region of the Prunus SFB gene to identify SFB genotypes of 48 Japanese apricot (P. mume) accessions. Eleven novel SFB alleles were isolated from these accessions and shared typical structural features with SFB alleles from other Prunus species. These novel SFB alleles were uniquely expressed in pollen. Hence, we concluded that these 11 PmSFB were pollen S determinants of P. mume. This current study offers the novel SFB genes of the P. mume S locus, which could be a useful potential resource for studies on pollen SI mechanisms. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

Back to TopTop