Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Pleurotus sapidus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4285 KiB  
Article
Fungal Methane Production Controlled by Oxygen Levels and Temperature
by Moritz Schroll, Katharina Lenhart, Thomas Bender, Piet Hötten, Alexander Rudolph, Sven Sörensen and Frank Keppler
Methane 2024, 3(2), 257-275; https://doi.org/10.3390/methane3020015 - 19 Apr 2024
Cited by 3 | Viewed by 3216
Abstract
Saprotrophic fungi, key players in global carbon cycling, have been identified as methane (CH4) sources not yet accounted for in the global CH4 budget. This study, for the first time, explores the influence of oxygen (O2) and temperature [...] Read more.
Saprotrophic fungi, key players in global carbon cycling, have been identified as methane (CH4) sources not yet accounted for in the global CH4 budget. This study, for the first time, explores the influence of oxygen (O2) and temperature on CH4 production by two fungi, Laetiporus sulphureus and Pleurotus sapidus. To explore the relationship between these parameters and fungal CH4 formation, we examined CH4 formation under varying O2 levels (0 to 98%) and temperatures (17, 27, and 40 °C) during fungal growth on pine wood, beech wood, and grass under sterile conditions. Our findings show that fungal CH4 formation strongly depends on O2 levels. Methane formation was highest when O2 levels exceeded 5%, whilst no CH4 formation was observed after complete O2 consumption. Reintroducing O2 immediately resumed fungal CH4 production. Methane formation normalized to O2 consumption (CH4_norm) showed a different pattern. L. sulphureus showed higher CH4_norm rates with higher O2 levels, whereas P. sapidus showed elevated rates between 0 and 5%. Temperature also significantly influenced CH4 and CH4_norm rates, with the highest production at 27 °C, and comparatively lower rates at 17 and 40 °C. These findings demonstrate the importance of O2 levels and temperature in fungal CH4 emissions, which are essential for refining CH4 source predictions. Full article
Show Figures

Figure 1

10 pages, 1997 KiB  
Article
Improvement in the Stability and Enzymatic Activity of Pleurotus sapidus Lipoxygenase Dissolved in Natural Deep Eutectic Solvents (NADESs)
by Maria Garbe, Leander Tom Lehmann, Ralf Günter Berger and Franziska Ersoy
Life 2024, 14(2), 271; https://doi.org/10.3390/life14020271 - 18 Feb 2024
Cited by 5 | Viewed by 2048
Abstract
Natural deep eutectic solvents (NADESs) can serve as solvents for enzymes, are biodegradable, and have low toxicities. Eight NADESs with different hydrogen bond acceptors and donors were tested to improve the stability and activity of a lipoxygenase from Basidiomycete Pleurotus sapidus (LOXPSA [...] Read more.
Natural deep eutectic solvents (NADESs) can serve as solvents for enzymes, are biodegradable, and have low toxicities. Eight NADESs with different hydrogen bond acceptors and donors were tested to improve the stability and activity of a lipoxygenase from Basidiomycete Pleurotus sapidus (LOXPSA). Betaine:sorbitol:water (1:1:3, BSorbW) and betaine:ethylene glycol (1:3, BEtGly) had the best impact on the peroxidation of linoleic acid and the side reaction of piperine to the vanilla-like scented compound piperonal. The yield of piperonal in NADESs increased by 43% in BSorbW and 40% in BEtGly compared to the control. The addition of BSorbW also enhanced the enzyme’s stability at various temperatures and increased its activity during incubation at 60 °C. The demonstrated improvement in lipoxygenase activity and stability indicates versatile applications in industry, expanding the potential uses of the enzyme. Full article
(This article belongs to the Special Issue Advances in Research in Biocatalysis)
Show Figures

Figure 1

19 pages, 1132 KiB  
Article
Production of an Anise- and Woodruff-like Aroma by Monokaryotic Strains of Pleurotus sapidus Grown on Citrus Side Streams
by Friederike Bürger, Maximilian Koch, Marco A. Fraatz, Alejandra B. Omarini, Ralf G. Berger and Holger Zorn
Molecules 2022, 27(3), 651; https://doi.org/10.3390/molecules27030651 - 19 Jan 2022
Cited by 8 | Viewed by 3517
Abstract
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the [...] Read more.
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus. Full article
(This article belongs to the Special Issue Selected Papers from the 16th Weurman Flavour Research Symposium)
Show Figures

Graphical abstract

22 pages, 3600 KiB  
Article
Monokaryotic Pleurotus sapidus Strains with Intraspecific Variability of an Alkene Cleaving DyP-Type Peroxidase Activity as a Result of Gene Mutation and Differential Gene Expression
by Nina-Katharina Krahe, Ralf G. Berger, Martin Witt, Holger Zorn, Alejandra B. Omarini and Franziska Ersoy
Int. J. Mol. Sci. 2021, 22(3), 1363; https://doi.org/10.3390/ijms22031363 - 29 Jan 2021
Cited by 15 | Viewed by 3208
Abstract
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the [...] Read more.
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons. Full article
Show Figures

Graphical abstract

17 pages, 3606 KiB  
Article
A DyP-Type Peroxidase of Pleurotus sapidus with Alkene Cleaving Activity
by Nina-Katharina Krahe, Ralf G. Berger and Franziska Ersoy
Molecules 2020, 25(7), 1536; https://doi.org/10.3390/molecules25071536 - 27 Mar 2020
Cited by 32 | Viewed by 4305
Abstract
Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and [...] Read more.
Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and the corresponding gene was identified. The amino acid sequence as well as the predicted tertiary structure showed typical characteristics of DyPs as well as a non-canonical Mn2+-oxidation site on its surface. The gene was expressed in Komagataella pfaffii GS115 yielding activities up to 142 U/L using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) as substrate. PsaPOX exhibited optima at pH 3.5 and 40 °C and showed highest peroxidase activity in the presence of 100 µM H2O2 and 25 mM Mn2+. PsaPOX lacked the typical activity of DyPs towards anthraquinone dyes, but oxidized Mn2+ to Mn3+. In addition, bleaching of β-carotene and annatto was observed. Biotransformation experiments verified the alkene cleavage activity towards the aryl alkenes (E)-methyl isoeugenol, α-methylstyrene, and trans-anethole, which was increased almost twofold in the presence of Mn2+. The resultant aldehydes are olfactants used in the fragrance and flavor industry. PsaPOX is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production. Full article
(This article belongs to the Special Issue Biocatalytic Synthesis of Bioactive Compounds)
Show Figures

Graphical abstract

14 pages, 4097 KiB  
Article
Nutrient Properties and Nuclear Magnetic Resonance-Based Metabonomic Analysis of Macrofungi
by Dan Liu, Yu-Qing Chen, Xiao-Wei Xiao, Ru-Ting Zhong, Cheng-Feng Yang, Bin Liu and Chao Zhao
Foods 2019, 8(9), 397; https://doi.org/10.3390/foods8090397 - 7 Sep 2019
Cited by 32 | Viewed by 5276
Abstract
Many delicious and nutritional macrofungi are widely distributed and used in East Asian regions, considered as edible and medicinal foods. In this study, 11 species of dried and fresh, edible and medicinal macrofungi, Ganoderma amboinense, Agaricus subrufescens, Dictyophora indusiata, Pleurotus [...] Read more.
Many delicious and nutritional macrofungi are widely distributed and used in East Asian regions, considered as edible and medicinal foods. In this study, 11 species of dried and fresh, edible and medicinal macrofungi, Ganoderma amboinense, Agaricus subrufescens, Dictyophora indusiata, Pleurotus sajor-caju, Pleurotus ostreatus, Pleurotus geesteranu, Hericium erinaceus, Stropharia rugosoannulata, Pleurotus sapidus, Antrodia camphorata, and Lentinus edodes (Berk.) Sing, were investigated to determine the content of their nutritional components, including proteins, fat, carbohydrates, trace minerals, coarse cellulose, vitamins, and amino acids. The amino acid patterns and similarity of macrofungi were distinguished through principal component analysis and hierarchical cluster analyses, respectively. A total of 103 metabolic small molecules of macrofungi were identified by nuclear magnetic resonance spectroscopy and were aggregated by heatmap. Moreover, the macrofungi were classified by principal component analysis based on these metabolites. The results show that carbohydrates and proteins are two main components, as well as the nutritional ingredients, that differ among various species and varied between fresh and dried macrofungi. The amino acid patterns in L. edodes and A. subrufescens were different compared with that of the other tested mushrooms. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables)
Show Figures

Figure 1

8 pages, 267 KiB  
Communication
Upgrading the Nutritional Value of Rice Bran by Solid-State Fermentation with Pleurotus sapidus
by Alejandra B. Omarini, Diana Labuckas, María P. Zunino, Romina Pizzolitto, Marcelo Fernández-Lahore, Damián Barrionuevo and Julio A. Zygadlo
Fermentation 2019, 5(2), 44; https://doi.org/10.3390/fermentation5020044 - 28 May 2019
Cited by 22 | Viewed by 8254
Abstract
Solid-state fermentation (SSF) of rice bran (RB) employing the edible fungus Pleurotus sapidus was investigated as a process strategy to improve the nutritional quality of this low-cost and abundant substrate. During fermentation, samples were withdrawn at different time intervals (4, 6, and 10 [...] Read more.
Solid-state fermentation (SSF) of rice bran (RB) employing the edible fungus Pleurotus sapidus was investigated as a process strategy to improve the nutritional quality of this low-cost and abundant substrate. During fermentation, samples were withdrawn at different time intervals (4, 6, and 10 days) and further analyzed. Established methods were deployed to monitor the changes in nutritional composition (carbohydrates, proteins, ash, and lipids). Additionally, changes in fatty acid composition was studied as a function of culture progress. Results showed that the SSF of rice bran increased total carbohydrates from 36.6% to 50.2%, total proteins from 7.4% to 12.8%, and ash from 7.6% to 11.5%. However, the total lipid content was reduced from 48.5% to 27.8%. The fatty acid (FA) composition of RB included mainly oleic, linoleic, and palmitic acids. Upon fermentation with P. sapidus, small differences were found: linoleic acid and oleic acid content were increased by 0.4% and 1.1%, respectively, while palmitic acid content was reduced by 0.8%. This study demonstrated an improvement in the nutritional quality of RB after fermentation with P. sapidus, since protein, carbohydrates, minerals, and specific FA components were increased. As a whole, our results indicate that fermented rice bran could be used as a high-quality animal feed supplement. Full article
(This article belongs to the Special Issue Fermentation Process in Biorefinery)
Show Figures

Graphical abstract

Back to TopTop