Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Phase Shifted Carrier PWM (PSC PWM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2864 KiB  
Article
Continuous-Control-Set Model Predictive Control Strategy for MMC-UPQC Under Non-Ideal Conditions
by Lianghua Chen, Jianping Zhou, Jiayu Zhai, Lisheng Yang, Xudong Qian and Zhiyong Tao
Energies 2025, 18(11), 2946; https://doi.org/10.3390/en18112946 - 3 Jun 2025
Viewed by 416
Abstract
In the MMC-based unified power quality conditioner (MMC-UPQC), the computational burden of finite-control-set model predictive control (FCS-MPC) increases rapidly with the number of MMC submodules. Meanwhile, conventional linear and nonlinear control methods suffer from limited compensation accuracy. To address this, a control strategy [...] Read more.
In the MMC-based unified power quality conditioner (MMC-UPQC), the computational burden of finite-control-set model predictive control (FCS-MPC) increases rapidly with the number of MMC submodules. Meanwhile, conventional linear and nonlinear control methods suffer from limited compensation accuracy. To address this, a control strategy combining continuous-control-set model predictive control (CCS-MPC) and phase-shifted carrier pulse-width modulation (PSC-PWM) is proposed. CCS-MPC performs repeated time-domain optimization based on the system model. It offers advantages such as fast dynamic response and ease of implementation, thereby enhancing both dynamic and steady-state performance, as well as compensation effectiveness. Unlike FCS-MPC, the computational complexity of CCS-MPC combined with PSC-PWM does not depend on the number of submodules, which significantly reduces the overall computational burden. Simulation results verify that the proposed method exhibits superior performance under three scenarios: grid-side voltage unbalance, high-order harmonic injection, and nonlinear load connection. Compared with the linear PI control strategy and the nonlinear passivity-based control strategy, the proposed method significantly enhances power quality and system robustness. Full article
Show Figures

Figure 1

26 pages, 12648 KiB  
Article
Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique
by Murthy Priya and Pathipooranam Ponnambalam
Energies 2022, 15(16), 6008; https://doi.org/10.3390/en15166008 - 19 Aug 2022
Cited by 8 | Viewed by 2497
Abstract
The contribution of the modular multilevel converter (MMC) in integrating non-conventional energy sources into the grid is significant; the integration of fuel cells with distributed energy sources is especially prominent as they provide a constant voltage and current for constant load applications. Still, [...] Read more.
The contribution of the modular multilevel converter (MMC) in integrating non-conventional energy sources into the grid is significant; the integration of fuel cells with distributed energy sources is especially prominent as they provide a constant voltage and current for constant load applications. Still, there is a high demand for a high-quality power conditioning unit since there is an occurrence of frequent power spikes. Further, the circulating current (CC) in phase legs is an inherent phenomenon of MMC that must be mitigated. Hence, this article proposed an MMC incorporating a fuzzy logic controller (FLC)-based technique to control the circulating currents. The fuzzy controller effectively reduced the harmonics of the CC in the dc-link system. In addition, phase-shifted carrier (PSC) modulation was employed for the MMC to improve the capacitor voltage balancing to maintain the constant input voltage. Moreover, a mathematical analysis of PSC modulation for MMC was performed to identify the PWM harmonic characteristics of the output voltage and the CC. The performance analysis of the proposed system was tested using the hardware in loop (HIL) simulation with the help of the real-time simulator OP-5700 to verify the feasibility. Full article
Show Figures

Figure 1

17 pages, 6512 KiB  
Article
Open-Loop Class-BD Audio Amplifiers with Balanced Common-Mode Output
by Wojciech Kołodziejski, Stanisław Kuta and Jacek Jasielski
Electronics 2021, 10(12), 1381; https://doi.org/10.3390/electronics10121381 - 9 Jun 2021
Cited by 3 | Viewed by 3240
Abstract
This paper presents new architectures and implementations of original open-loop Class-BD audio amplifiers with balanced Common-Mode output. The output stage of each proposed amplifier includes the typical H-bridge with four MOSFETs and four additional MOSFET switches that balance and keep the Common-Mode output [...] Read more.
This paper presents new architectures and implementations of original open-loop Class-BD audio amplifiers with balanced Common-Mode output. The output stage of each proposed amplifier includes the typical H-bridge with four MOSFETs and four additional MOSFET switches that balance and keep the Common-Mode output constant. The presented amplifiers employ the extended NBDD PWM or PSC PWM modulation scheme. When the output stage is built only on NMOSFET transistors, gate drivers require a floating power supply, using a self-boost charge pump with capacitive isolation of the control signal. The use of complementary MOSFETs in the output stage greatly simplifies gate control systems. The proposed amplifiers were compared to the typical Class-BD configuration, using the optimal NBDD modulation with respect to audio performance of the Differential-Mode (DM) and Common-Mode (CM) outputs. Basic SPICE simulations and experimental studies have shown that the proposed Class-BD amplifiers have similar audio performance to the prototype with the optimal NBDD modulation scheme, while at the same time having a balanced constant voltage CM output, thus eliminating the main contributor to radiation emission. As a result, the filtering of the DM output signals can be greatly simplified, while the filtering of the CM output signals can be theoretically eliminated. Practically, due to the timing errors added by the gate drivers, spikes are generated at the CM output, which are very easy to filter out by the reduced LC output filter, even at very low L. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

36 pages, 4711 KiB  
Review
A Review of Modular Multilevel Converters for Stationary Applications
by Yang Wang, Ahmet Aksoz, Thomas Geury, Salih Baris Ozturk, Omer Cihan Kivanc and Omar Hegazy
Appl. Sci. 2020, 10(21), 7719; https://doi.org/10.3390/app10217719 - 31 Oct 2020
Cited by 47 | Viewed by 10741
Abstract
A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the [...] Read more.
A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the power switches. Remarkable studies have been carried out regarding its topology, control, and operation. The main purpose of this review is to present the current state of the art of the MMC technology and to offer a better understanding of its operation and control for stationary applications. In this study, the MMC configuration is presented regarding its conventional and advanced submodule (SM) and overall topologies. The mathematical modeling, output voltage, and current control under different grid conditions, submodule balancing control, circulating current control, and modulation methods are discussed to provide the state of the MMC technology. The challenges linked to the MMC are associated with submodule balancing control, circulating current control, control complexity, and transient performance. Advanced nonlinear and predictable control strategies are expected to improve the MMC control and performance in comparison with conventional control methods. Finally, the power losses associated with the advanced wide bandgap (WBG) power devices (such as SiC, GaN) are explored by using different modulation schemes and switching frequencies. The results indicate that although the phase-shifted carrier-based pulse width modulation (PSC-PWM) has higher power losses, it outputs a better quality voltage with lower total harmonic distortion (THD) in comparison with phase-disposition pulse width modulation (PD-PWM) and sampled average modulation pulse width modulation (SAM-PWM). In addition, WBG switches such as silicon carbide (SiC) and gallium nitride (GaN) devices have lower power losses and higher efficiency, especially at high switching frequency in the MMC applications. Full article
(This article belongs to the Special Issue Power Electronic Applications in Power and Energy Systems)
Show Figures

Figure 1

13 pages, 4810 KiB  
Article
Current Balancing Algorithm for Three-Phase Multilevel Current Source Inverters
by Faleh Alskran and Marcelo Godoy Simões
Energies 2020, 13(4), 860; https://doi.org/10.3390/en13040860 - 16 Feb 2020
Cited by 8 | Viewed by 2651
Abstract
In high power, medium voltage applications, Current Source Inverters CSIs are connected in parallel to accommodate high DC currents. Using a proper multilevel modulation technique, parallel-connected CSIs can operate as a Multilevel CSI (MCSI). The most common modulation technique for MCSIs is the [...] Read more.
In high power, medium voltage applications, Current Source Inverters CSIs are connected in parallel to accommodate high DC currents. Using a proper multilevel modulation technique, parallel-connected CSIs can operate as a Multilevel CSI (MCSI). The most common modulation technique for MCSIs is the Phase-Shifted Carrier SPWM (PSC-SPWM). The proper operation of the MCSI requires each CSI modules to have the same average current flowing through its sharing inductors. In practice, the average currents of the CSI modules deviate from their nominal values. Therefore, current balancing mechanisms must be implemented. In the literature, several solutions have been proposed to tackle the current imbalance problem. Most of these solutions are based on altering the phase-shift or magnitude of the carrier waveforms of the PSC-SPWM. They require dedicated PI controllers and they are applicable to MCSIs with specific numbers of levels. This paper proposes a Current Balancing Algorithm (CBA) that can be implemented in any MCSI with any number of levels. The proposed CBA does not require any PI controllers, nor does it require any alteration to the PWM carrier waveforms. The CBA is implemented using a modified Level-Shifted SPWM (LS-PWM). The modified LS-SPWM is shown to produce lower THD and lower di/dt when compared to the PSC-SPWM. The CBA and modified LS-SPWM where implemented in a proof-of-concept lab prototype. The experimental results are presented for the five-level and seven-level cases. Full article
Show Figures

Figure 1

Back to TopTop