Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Phallus impudicus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1387 KiB  
Article
Comparative Research of Antioxidant, Antimicrobial, Antiprotozoal and Cytotoxic Activities of Edible Suillus sp. Fruiting Body Extracts
by Asta Judžentienė and Jonas Šarlauskas
Foods 2025, 14(7), 1130; https://doi.org/10.3390/foods14071130 - 25 Mar 2025
Viewed by 577
Abstract
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) [...] Read more.
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) varied from 245.32 ± 5.45 to 580.77 ± 13.10 (mg (GAE) per 100 g of dry weight) in methanolic extracts of S. bovinus and S. granulatus fruiting bodies, respectively. In ethyl acetate extracts, the highest TPC were obtained for S. variegatus (310 ± 9.68, mg (GAE)/100 g, dry matter), and the lowest means for S. luteus (105 ± 3.55, mg (GAE)/100 g dry weight). The ethyl acetate extracts of the tested Suillus species exhibited a stronger antioxidant activity (AA) to scavenge DPPH and ABTS•+ than the methanolic ones, and the highest effects were determined for S. luteus (EC50, 0.15 ± 0.05 and 0.23 ± 0.05%, respectively). In the case of methanolic extracts, the highest AA were evaluated for S. granulatus. (EC50 for DPPH and ABTS•+, 0.81 ± 0.30 and 0.95 ± 0.22%, respectively). The ABTS•+ scavenging potential varied from 0.25 ± 0.05 to 0.74 ± 0.10 (mmol/L, TROLOX equivalent, for S. granulatus and S. variegatus fruiting body extracts, respectively) in the ethyl acetate extracts. S. granulatus extracts demonstrated the widest range of antimicrobial effects against both gram-positive and gram-negative bacteria (from 11.7 ± 1.3 to 28.5 ± 3.3 mm against Pseudomonas aeruginosa and Bacillus mycoides, respectively); and against two fungal strains (up to 13.6 ± 0.4 mm on Meyerozyma guilliermondii) in agar disc diffusion tests. Our study revealed that methanolic extracts of the most tested Suillus sp. were not active enough against the tested parasites: Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum. Only S. variegatus extracts showed good antiprotozoal effects against P. falciparum (12.70 µg/mL). Cytotoxic activity was observed on human diploid lung cells MRC-5 SV2 by S. granulatus extracts (64.45 µg/mL). For comparative purposes, extracts of other common Lithuanian fungi, such as Xerocomus sp. (X. badius, X. chrysenteron and X. subtomentosus), Tylopilus felleus, Phallus impudicus and Pycnoporus cinnabarinus were investigated for their activity. The P. cinnabarinus extracts demonstrated the highest and broadest overall effects: 1.32 µg/mL against T. brucei, 1.46 µg/mL against P. falciparum, 3.93 µg/mL against T. cruzi and 21.53 µg/mL against L. infantum. Additionally, this extract exhibited strong cytotoxicity on MRC-5 cells (13.05 µg/mL). The investigation of bioactive fungal metabolites is important for the development of a new generation of antioxidants, antimicrobials, antiparasitic and anticancer agents. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 7935 KiB  
Article
Inhibitory Effect and Mechanism of Hexanal on the Maturation of Peach-Shaped Phallus impudicus
by Hong He, Shuya Fan, Gan Hu, Beibei Wang, Dayu Liu, Xinhui Wang, Jinqiu Wang and Fang Geng
J. Fungi 2025, 11(2), 127; https://doi.org/10.3390/jof11020127 - 8 Feb 2025
Viewed by 839
Abstract
Phallus impudicus is a fungus used as a medicine and nutrient-rich food. However, the shelf life of mature Phallus impudicus is only a few hours. Therefore, research on its preservation technology is essential for improving its economic value. This study investigated the effects [...] Read more.
Phallus impudicus is a fungus used as a medicine and nutrient-rich food. However, the shelf life of mature Phallus impudicus is only a few hours. Therefore, research on its preservation technology is essential for improving its economic value. This study investigated the effects of hexanal concentrations (25–100 μL/L) and treatment time (4–8 h) on the inhibition of peach-shaped Phallus impudicus (CK) maturation and found that the maturation rate was 25% under optimal conditions of 25 μL/L hexanal treatment for 6 h. Quantitative transcriptomic and lipidomic analyses were conducted among CK, mature Phallus impudicus (M-P), and hexanal-treated peach-shaped Phallus impudicus (H-P-P). In total, 2933 and 2746 differentially expressed genes (DEGs) and 156 and 111 differentially abundant lipids (DALs) were identified in CK vs. H-P-P and M-P vs. H-P-P, respectively. Functional analysis demonstrated that hexanal treatment inhibited phospholipase D gene expression and reduced phosphatidic acid abundance, thereby inhibiting the activation of the phosphatidylinositol signaling system and the signal amplification of the cell wall integrity mitogen-activated protein kinase pathway. These blocked signal transductions inhibited the gene expression of most β-glucanases, chitinases and chitin synthases, further affecting cell wall reconstruction. Moreover, hexanal treatment enhanced membrane stability by reducing the monogalactosyl diglyceride/digalactosyl diacylglycerol ratio and increasing the phosphatidylcholine/phosphatidylethanolamine ratio. This study contributed to the development of hexanal treatment as a postharvest preservation technology for Phallus impudicus. Full article
(This article belongs to the Special Issue Breeding and Metabolism of Edible Fungi)
Show Figures

Figure 1

Back to TopTop