Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PgMADS genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 31493 KiB  
Article
Combined Physiology and Transcriptome Analyses Provide Insights into Malformed Fruit of Cocos nucifera L.
by Lilan Lu, Zhiguo Dong, Yuan Zhang, Siting Chen and Qingxin Wu
Agriculture 2025, 15(7), 723; https://doi.org/10.3390/agriculture15070723 - 27 Mar 2025
Viewed by 410
Abstract
Malformed coconut fruit occurrence exhibits dual impacts on agricultural productivity and economic returns, primarily through substantial yield reduction and compromised commercial value resulting from morphological defects. To elucidate the molecular determinants underlying this developmental anomaly, we conducted a systematic investigation integrating physiological profiling [...] Read more.
Malformed coconut fruit occurrence exhibits dual impacts on agricultural productivity and economic returns, primarily through substantial yield reduction and compromised commercial value resulting from morphological defects. To elucidate the molecular determinants underlying this developmental anomaly, we conducted a systematic investigation integrating physiological profiling and transcriptomic sequencing on pulp tissues from malformed (MF) and normal (NF) coconut fruits. Notably, MF specimens displayed marked depletion in carbohydrate reserves, with soluble sugars (SS), reducing sugars (RS), starch (SH), soluble proteins (SP), and fat (FA) declining by 28.57%, 20.43%, 15.51%, 36.78%, and 50.18%, respectively, compared to NF controls. Conversely, a coordinated upregulation of phytohormones was observed, where indole acetic acid (IAA), abscisic acid (ABA), cytokinin (CK), gibberellic acid (GA), brassinosteroid (BR), jasmonic acid (JA), and salicylic acid (SA) levels increased by 31.82–92.97%, while ethylene (ETH) exhibited a paradoxical 30.09% reduction. Transcriptomic dissection revealed 6370 functionally annotated differentially expressed genes (DEGs), comprising 4235 upregulated and 2135 downregulated transcripts. These DEGs were predominantly enriched in critical pathways including plant hormone signal transduction, flavonoid/phenylpropanoid biosynthesis, and carbohydrate metabolic networks. Particularly noteworthy was the enhanced activity of cell wall remodeling enzymes—cellulase (CEL), polygalacturonase (PG), and pectinesterase (PE)—accompanied by differential expression of nine cell wall-associated gene families (CEL, PE, PG, PEL, URG, UTR, VTC2, EXP, XET/XTH) and eight phytohormone-related gene clusters. Functional stratification analysis further identified key transcriptional regulators, with MYB, ERF/AP2, BHLH, WRKY, bZIP, and MADS transcription factors demonstrating significant expression divergence, suggesting their pivotal regulatory roles in MF pathogenesis. This multi-omics integration not only deciphers the molecular choreography of coconut fruit malformation but also establishes a novel conceptual framework for developmental disorder research in perennial crops. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

22 pages, 3625 KiB  
Article
Evolution, Structural and Functional Characteristics of the MADS-box Gene Family and Gene Expression Through Methyl Jasmonate Regulation in Panax ginseng C.A. Meyer
by Katleho Senoko Lephoto, Dinghui Wang, Sizhang Liu, Li Li, Chaofan Wang, Ruicen Liu, Yue Jiang, Aimin Wang, Kangyu Wang, Mingzhu Zhao, Ping Chen, Yi Wang and Meiping Zhang
Plants 2024, 13(24), 3574; https://doi.org/10.3390/plants13243574 - 21 Dec 2024
Viewed by 912
Abstract
MADS-box genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits. The MADS-Box gene family in [...] Read more.
MADS-box genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits. The MADS-Box gene family in Jilin ginseng has not been studied. This study investigated the evolution and structural and functional diversification of the PgMADS gene family using bioinformatics and analyzed gene expression through methyl jasmonate (MeJA) regulation. The results revealed that the evolution of the PgMADS gene family is diverged into ten clusters of a constructed phylogenetic tree, of which the SOC1 cluster is the most prevalent with a higher number of PgMADS genes. Despite their distinct evolutionary clusters, a significant number of members contains common conserved motifs. The PgMADS gene family was functionally differentiated into three primary functional categories, biological process, molecular function, and cellular component. Their expression is variable within a tissue, at a developmental stage, and in cultivars. Regardless of the diversity of the functions of PgMADS genes and evolution, their expression correlated and formed a co-expression gene network. Weighted gene co-expression network analyses identified hub genes that could be regulating ginsenoside biosynthesis. Interestingly, the family also is involved in MeJA regulation. These findings provide a valuable reference for future investigations on PgMADS genes. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 3558 KiB  
Article
Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus)
by Yinquan Qu, Weilong Kong, Qian Wang and Xiangxiang Fu
Int. J. Mol. Sci. 2021, 22(18), 10128; https://doi.org/10.3390/ijms221810128 - 19 Sep 2021
Cited by 15 | Viewed by 3394
Abstract
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box [...] Read more.
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus. Full article
(This article belongs to the Special Issue Light as a Growth and Development Regulator to Control Plant Biology)
Show Figures

Figure 1

17 pages, 5104 KiB  
Article
Genome-Wide Identification and Expression Analysis of MIKC-Type MADS-Box Gene Family in Punica granatum L.
by Yujie Zhao, Honglian Zhao, Yuying Wang, Xinhui Zhang, Xueqing Zhao and Zhaohe Yuan
Agronomy 2020, 10(8), 1197; https://doi.org/10.3390/agronomy10081197 - 14 Aug 2020
Cited by 23 | Viewed by 3770
Abstract
MADS-box is a critical transcription factor regulating the development of floral organs and plays essential roles in the growth and development of floral transformation, flower meristem determination, the development of male and female gametophytes, and fruit development. In this study, 36 MIKC-type MADS-box [...] Read more.
MADS-box is a critical transcription factor regulating the development of floral organs and plays essential roles in the growth and development of floral transformation, flower meristem determination, the development of male and female gametophytes, and fruit development. In this study, 36 MIKC-type MADS-box genes were identified in the ‘Taishanhong’ pomegranate genome. By utilizing phylogenetic analysis, 36 genes were divided into 14 subfamilies. Bioinformatics methods were used to analyze the gene structure, conserved motifs, cis-acting elements, and the protein interaction networks of the MIKC-type MADS-box family members in pomegranate, and their expressions pattern in different tissues of pomegranate were analyzed. Tissue-specific expression analysis revealed that the E-class genes (PgMADS03, PgMADS21, and PgMADS27) were highly expressed in floral tissues, while PgMADS29 was not expressed in all tissues, indicating that the functions of the E-class genes were differentiated. PgMADS15 of the C/D-class was the key gene in the development network of pomegranate flower organs, suggesting that PgMADS15 might play an essential role in the peel and inner seed coat development of pomegranate. The results in this study will provide a reference for the classification, cloning, and functional research of pomegranate MADS-box genes. Full article
Show Figures

Figure 1

Back to TopTop