Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Petite Pearl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1028 KB  
Article
How Does Extended Maceration Affect Tannin and Color of Red Wines from Cold-Hardy Grape Cultivars?
by Aude A. Watrelot and Nicolas Delchier
Foods 2025, 14(7), 1187; https://doi.org/10.3390/foods14071187 - 28 Mar 2025
Cited by 3 | Viewed by 1635
Abstract
Red wines produced with interspecific grape cultivars tend to have low tannin concentration and are therefore unbalanced. Extended maceration (EM) is a common winemaking technique which can promote the extraction of tannins from grape skins and seeds. The goal of this study was [...] Read more.
Red wines produced with interspecific grape cultivars tend to have low tannin concentration and are therefore unbalanced. Extended maceration (EM) is a common winemaking technique which can promote the extraction of tannins from grape skins and seeds. The goal of this study was to evaluate the effect of EM on the tannin concentration, color intensity and other chemical properties of red wines made from cold-hardy grape cultivars. The wines were made from two cold-hardy interspecific grape cultivars (Marquette, and Petite Pearl) for either 7 days (control) or 21 days (EM) before pressing. Chemical analysis of the wines was conducted to determine their tannin concentration and color parameters at different stages of the process and after 14 months of aging. EM resulted in an improvement in the iron-reactive phenolic content of Marquette red wines (from 582 to 969 mg/L at bottling in control and EM wines, respectively), but no significant improvement in tannin content. The hue of Petite Pearl wines increased following EM only at pressing, and color intensity of those wines decreased at pressing and bottling by 43% and 52%, respectively. This study was the first one conducted on non-Vitis vinifera grapes which showed a lack of impact of EM on the phenolics and tannin concentration in the red wines made in 2022. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

10 pages, 422 KB  
Communication
Quality Characteristics of Piquette: A Potential Use of Grape Pomace
by Aude A. Watrelot and James Hollis
Beverages 2024, 10(3), 64; https://doi.org/10.3390/beverages10030064 - 26 Jul 2024
Cited by 2 | Viewed by 2293
Abstract
Grape pomace is a common waste product that can be used as compost, as animal feed or discarded. The goal of this study was to evaluate the quality and consumers’ perception of a value-added grape pomace beverage, piquette, made using different red grape [...] Read more.
Grape pomace is a common waste product that can be used as compost, as animal feed or discarded. The goal of this study was to evaluate the quality and consumers’ perception of a value-added grape pomace beverage, piquette, made using different red grape cultivars, yeast strains and grape pomace to water ratios. Petite Pearl and Marquette grape pomace were soaked using different pomace to water ratios in water for 2 days, prior to being pressed. Cane sugar was added to the juices prior to inoculation with three yeast strains (Cross Evolution, ICV D254, and Exotics Mosaic). The piquettes were bottled before chemical analysis and sensory evaluation by an untrained sensory panel following 8 months of storage. Piquettes made from Petite Pearl grape pomace, regardless of yeast strain, were preferred by consumers. Petite Pearl piquettes were fruity and pink, especially using D254 yeast. Piquettes made from different ratios of Petite Pearl pomace to water on a larger scale lacked nutrients at the beginning of fermentation, which led to “rotten-egg” aromas and were the least accepted by consumers. Full article
Show Figures

Figure 1

17 pages, 3486 KB  
Article
Tannin and Iron-Reactive Phenolics Content in Red Cold-Hardy Hybrid Grape Tissues throughout Development and Ripening
by Alexander D. Gapinski, Nicolas Delchier and Aude A. Watrelot
Foods 2024, 13(7), 986; https://doi.org/10.3390/foods13070986 - 23 Mar 2024
Cited by 3 | Viewed by 2030
Abstract
Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid [...] Read more.
Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid cultivars in comparison to V. vinifera cv. ‘Pinot noir’ throughout development and ripening. Basic chemical properties, iron-reactive phenolics content, and tannin content were evaluated in the juice, skins, and seeds of Vitis spp. cvs. ‘Crimson Pearl’, ‘Marquette’, and ‘Petite Pearl’ and ‘Pinot noir’ at six time points from one week post-fruit set to harvest in 2021 and 2022. ‘Crimson Pearl’ displayed similar iron-reactive phenolics and tannin contents in juice, skins (22.6–25.4 mg/g dry skin and 8.0–12.2 mg/g dry skin, respectively), and seeds (12.8–29.8 mg/g dry seed and 4.2–22.0 mg/g dry seed, respectively) as ‘Petite Pearl’ and ‘Marquette’ at harvest in 2022. The hybrid cultivars showed a similar trend of phenolic accumulation as ‘Pinot noir’ but resulted in overall lower content in skins and seeds. Despite differences in developmental trends, the three hybrid grape cultivars displayed similar phenolic content at harvest ripeness. This is the first study examining the phenolic content of ‘Crimson Pearl’ and ‘Petite Pearl’ throughout berry development and ripening. This study provides important information for the wine industry to make informed decisions on making wine with these cultivars. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

11 pages, 1081 KB  
Article
Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods
by Aude A. Watrelot
Molecules 2021, 26(16), 4923; https://doi.org/10.3390/molecules26164923 - 14 Aug 2021
Cited by 23 | Viewed by 5713
Abstract
Tannin content in red wines is positively correlated with astringency perception and wine grade; however, tannin quantification is one of the main challenges. In this study, tannin content was quantified using three analytical methods in commercial red wines from Vitis vinifera and interspecific [...] Read more.
Tannin content in red wines is positively correlated with astringency perception and wine grade; however, tannin quantification is one of the main challenges. In this study, tannin content was quantified using three analytical methods in commercial red wines from Vitis vinifera and interspecific cold-hardy hybrids including Marquette, Frontenac, and Petite pearl cultivars. Protein (PP) and methylcellulose precipitation (MCP) methods were compared to a HPLC-DAD method, which is based on the interaction between tannins and a hydrophobic surface (RPC). Frontenac wines were the poorest in tannins and Cabernet sauvignon wines were the richest regardless of the method used. In cold-hardy red wines, the tannin content was higher in Marquette with high alcohol content, which suggested that the tannins were extracted from seeds rather than skins. The high limit of quantification of the PP method and the presence of anthocyanin di-glucosides in cold-hardy wines were parameters suggesting that protein and methylcellulose precipitation methods were neither suitable nor reliable for the quantification of tannins in cold-hardy red wines. The tannin content quantified by RPC was positively correlated to tannin quantified by MCP, suggesting that the RPC method would be relevant for the quantification of tannins in red wines. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions II)
Show Figures

Figure 1

11 pages, 261 KB  
Article
Disease Susceptibility of Interspecific Cold-Hardy Grape Cultivars in Northeastern U.S.A
by Ann L. Hazelrigg, Terence L. Bradshaw and Gabriella S. Maia
Horticulturae 2021, 7(8), 216; https://doi.org/10.3390/horticulturae7080216 - 30 Jul 2021
Cited by 7 | Viewed by 3742
Abstract
Susceptibility to diseases of economically important grapes is critical to the evaluation of germplasm recommended for commercial production and for the development of sustainable production systems. In 2018–2019, the cold-hardy grape cultivars including ‘Brianna’, ‘Crimson Pearl’, ‘Itasca’, ‘Louise Swenson’, ‘Marechal Foch’, ‘Marquette’ ‘Petite [...] Read more.
Susceptibility to diseases of economically important grapes is critical to the evaluation of germplasm recommended for commercial production and for the development of sustainable production systems. In 2018–2019, the cold-hardy grape cultivars including ‘Brianna’, ‘Crimson Pearl’, ‘Itasca’, ‘Louise Swenson’, ‘Marechal Foch’, ‘Marquette’ ‘Petite Pearl’, ‘St. Pepin’, and ‘Verona’ were evaluated on non-treated vines for susceptibility to downy mildew, powdery mildew, black rot, anthracnose, Phomopsis leaf spot and fruit rot, and Botrytis bunch rot. No cultivars were consistently disease-free, and all exhibited some degree of black rot and powdery mildew infection. Relative susceptibility to disease was not consistent across both years, but ‘Brianna’ had greater incidence of black rot and ‘Louise Swenson’ showed lower incidence of powdery mildew in both years. The relatively new cultivars ‘Crimson Pearl’ and ‘Verona’ exhibited comparatively moderate disease susceptibility overall. Growers typically manage diseases with fungicides on commercial farms, so cultivar susceptibility is just one component of a sustainable pest management and production system. Full article
(This article belongs to the Special Issue Grape Responses to Abiotic and Biotic Stresses)
Back to TopTop