Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Peptacetobacter hiranonis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2348 KiB  
Article
Effects of Metronidazole on the Fecal Microbiota, Fecal Metabolites, and Serum Metabolites of Healthy Adult Cats
by Sara E. Martini, Teresa Schmidt, Wenyi Huang, Amanda B. Blake, João P. Cavasin, Jan S. Suchodolski and Kelly S. Swanson
Pets 2025, 2(2), 19; https://doi.org/10.3390/pets2020019 - 28 Apr 2025
Viewed by 2670
Abstract
Antibiotics are commonly used to aid in the remission of gastrointestinal diseases, but usage may lead to prolonged dysbiosis. The objective of this study was to evaluate the effects of metronidazole on fecal microbiota, fecal metabolites, and serum bile acids and uremic toxins [...] Read more.
Antibiotics are commonly used to aid in the remission of gastrointestinal diseases, but usage may lead to prolonged dysbiosis. The objective of this study was to evaluate the effects of metronidazole on fecal microbiota, fecal metabolites, and serum bile acids and uremic toxins of healthy adult cats. Twelve healthy adult cats (4.7 ± 0.4 yr) received metronidazole (20 mg/kg BW PO BID) for 14 days (day 0–14) and were monitored during a 28-day recovery period (day 15–42). Fecal and blood samples were collected at baseline (day 0), after metronidazole (day 14), and weekly during recovery (on days 21, 28, 35, and 42). Fecal samples were analyzed for microbiota and bacterial metabolites. Serum samples were analyzed for bile acids and uremic toxins. Metronidazole increased dysbiosis index and fecal lactate concentrations (p < 0.0001) and decreased fecal propionate, butyrate, and secondary bile acid concentrations (p < 0.0001) for up to 28 days. Prolonged dysbiosis and Peptacetobacter (Clostridium) hiranonis reductions were observed in 10/12 (83%) cats. Serum uremic toxins were also reduced (p < 0.0001) after metronidazole administration. The observed changes after metronidazole administration illustrate how changes in the gut microbiome alter microbial metabolism and its relation to host dysmetabolism. In conclusion, metronidazole is a potent antibiotic with persistent effects observed in the microbiome and metabolome, even up to one month after administration. Full article
Show Figures

Figure 1

15 pages, 2231 KiB  
Article
Temporal Variability of the Dominant Fecal Microbiota in Healthy Adult Cats
by Chi-Hsuan Sung, Sina Marsilio, Rachel Pilla, Yu-An Wu, Joao Pedro Cavasin, Min-Pyo Hong and Jan S. Suchodolski
Vet. Sci. 2024, 11(1), 31; https://doi.org/10.3390/vetsci11010031 - 13 Jan 2024
Cited by 7 | Viewed by 3364
Abstract
While shifts in gut microbiota have been studied in diseased states, the temporal variability of the microbiome in cats has not been widely studied. This study investigated the temporal variability of the feline dysbiosis index (DI) and the abundance of core bacterial groups [...] Read more.
While shifts in gut microbiota have been studied in diseased states, the temporal variability of the microbiome in cats has not been widely studied. This study investigated the temporal variability of the feline dysbiosis index (DI) and the abundance of core bacterial groups in healthy adult cats. The secondary aim was to evaluate the relationship between the fecal abundance of Clostridium hiranonis and the fecal concentrations of unconjugated bile acids. A total of 142 fecal samples collected from 17 healthy cats were prospectively included: nine cats with weekly collection over 3 weeks (at least four time points), five cats with monthly collection over 2 months (three time points), and three cats with additional collections for up to 10 months. The DI remained stable within the reference intervals over two months for all cats (Friedman test, p > 0.2), and 100% of the DI values (n = 142) collected throughout the study period remained within the RI. While some temporal individual variation was observed for individual taxa, the magnitude was minimal compared to cats with chronic enteropathy and antibiotic exposure. Additionally, the abundance of Clostridium hiranonis was significantly correlated with the percentage of fecal primary bile acids, supporting its role as a bile acid converter in cats. Full article
(This article belongs to the Special Issue Digestive Diseases of Dogs and Cats)
Show Figures

Figure 1

11 pages, 1546 KiB  
Communication
Correlation between Peptacetobacter hiranonis, the baiCD Gene, and Secondary Bile Acids in Dogs
by Bruna Correa Lopes, Chih-Chun Chen, Chi-Hsuan Sung, Patricia Eri Ishii, Luis Fernando da Costa Medina, Frederic P. Gaschen, Jan S. Suchodolski and Rachel Pilla
Animals 2024, 14(2), 216; https://doi.org/10.3390/ani14020216 - 9 Jan 2024
Cited by 7 | Viewed by 3288
Abstract
Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is [...] Read more.
Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography–mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Back to TopTop