Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Penaeus vannamei shells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2893 KB  
Article
Role of Filter-Feeding Bivalves in the Bioaccumulation and Transmission of White Spot Syndrome Virus (WSSV) in Shrimp Aquaculture Systems
by Joon-Gyu Min, Young-Chul Kim and Kwang-Il Kim
Pathogens 2024, 13(12), 1103; https://doi.org/10.3390/pathogens13121103 - 13 Dec 2024
Cited by 3 | Viewed by 1293
Abstract
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (Crassostrea gigas), blue [...] Read more.
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (Crassostrea gigas), blue mussels (Mytilus edulis), and manila clams (Venerupis philippinarum) cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.87 cm, 6.97 cm, and 5.7 cm, respectively) cohabitated with WSSV-infected shrimp (Penaeus vannamei, average body weight: 16.4 g) for 48 h. In the experiments, bivalves accumulated WSSV particles in both the gill and digestive gland tissues, with the digestive glands exhibiting higher viral load (average viral load, 3.91 × 104 copies/mg), showing that the viral concentrations in bivalve tissues are directly influenced by seawater WSSV concentrations, reaching levels sufficient to induce infection and 100% mortality in healthy shrimp using tissue homogenates. After a 168 h release period in clean water, the WSSV levels in bivalve tissues decreased below the detection thresholds, indicating reduced transmission risk. These results highlight the role of bivalves as temporary reservoirs of WSSV in aquaculture settings, with the transmission risk dependent on the viral concentration and retention period. Our findings suggest that the management of bivalve exposure in WSSV-endemic environments could improve the biosecurity of shrimp farms. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

15 pages, 4307 KB  
Article
Removal of Fluoride from Aqueous Solution Using Shrimp Shell Residue as a Biosorbent after Astaxanthin Recovery
by Yan Li, Lili Zhang, Minru Liao, Chao Huang and Jing Gao
Molecules 2023, 28(9), 3897; https://doi.org/10.3390/molecules28093897 - 5 May 2023
Cited by 4 | Viewed by 2586
Abstract
Natural astaxanthin has been widely used in the food, cosmetic, and medicine industries due to its exceptional biological activity. Shrimp shell is one of the primary natural biological sources of astaxanthin. However, after astaxanthin recovery, there is still a lot of chitin contained [...] Read more.
Natural astaxanthin has been widely used in the food, cosmetic, and medicine industries due to its exceptional biological activity. Shrimp shell is one of the primary natural biological sources of astaxanthin. However, after astaxanthin recovery, there is still a lot of chitin contained in the residues. In this study, the residue from shrimp (Penaeus vannamei) shells after astaxanthin extraction using ionic liquid (IL) 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) was used as a bioadsorbent to remove fluoride from the aqueous solution. The results show the IL extraction conditions, including the solid/liquid ratio, temperature, time, and particle size, all played important roles in the removal of fluoride by the shrimp shell residue. The shrimp shells treated using [Emim]Ac at 100 °C for 2 h exhibited an obvious porous structure, and the porosity showed a positive linear correlation with defluorination (DF, %). Moreover, the adsorption process of fluoride was nonspontaneous and endothermic, which fits well with both the pseudo-second-order and Langmuir models. The maximum adsorption capacity calculated according to the Langmuir model is 3.29 mg/g, which is better than most bioadsorbents. This study provides a low-cost and efficient method for the preparation of adsorbents from shrimp processing waste to remove fluoride from wastewater. Full article
(This article belongs to the Special Issue Food-Waste as a Sustainable Source of Chemicals and Materials)
Show Figures

Figure 1

16 pages, 9814 KB  
Article
Comparison of the Proximate Composition and Nutritional Profile of Byproducts and Edible Parts of Five Species of Shrimp
by Zhenyang Liu, Qiumei Liu, Di Zhang, Shuai Wei, Qinxiu Sun, Qiuyu Xia, Wenzheng Shi, Hongwu Ji and Shucheng Liu
Foods 2021, 10(11), 2603; https://doi.org/10.3390/foods10112603 - 27 Oct 2021
Cited by 88 | Viewed by 9772
Abstract
The nutritional components of different parts (meat, head, shell and tail) of Litopenaeus vannamei (L.v), Macrobrachium rosenbergii (M.r), Penaeus monodon (P.m), Fenneropenaeus chinensis (F.c), and Penaeus japonicus (P.j) were analyzed and their nutritional [...] Read more.
The nutritional components of different parts (meat, head, shell and tail) of Litopenaeus vannamei (L.v), Macrobrachium rosenbergii (M.r), Penaeus monodon (P.m), Fenneropenaeus chinensis (F.c), and Penaeus japonicus (P.j) were analyzed and their nutritional values were evaluated. For the five species of shrimp, the meat yield was 37.47–55.94%, and the byproduct yield was 44.06–62.53%. The meat yields of L.v and F.c were the highest (55.94 and 55.92%, respectively), and the meat yield of M.r was the lowest (37.47%). The shrimp contain high amounts of crude protein, and the values of the amino acid score (AAS), chemical score (CS), and essential amino index (EAAI) were greater than or close to 1.00, indicating that shrimp protein had higher nutritional value. The shrimp head was rich in polyunsaturated fatty acids and the ratio of n-6 to n-3 PUFAs was from 0.37 to 1.68, indicating that the shrimp head is rich in n-3 PUFAs and is a good source of n-3 PUFAs. The five species of shrimp were rich in macro- and micro-minerals, especially in shrimp byproducts. The shrimp byproducts were also rich in other bioactive ingredients (astaxanthin), which are also very valuable for developing biological resources. Therefore, shrimp have many nutritional benefits, and their byproducts can also be used to develop natural nutraceuticals, which are considered to be one of the healthiest foods. Full article
(This article belongs to the Special Issue Advanced Technologies in Quality Improvement of Animal Production)
Show Figures

Graphical abstract

17 pages, 4805 KB  
Article
Preparation and Characterization of Nanoporous Activated Carbon Derived from Prawn Shell and Its Application for Removal of Heavy Metal Ions
by Jian Guo, Yaqin Song, Xiaoyang Ji, Lili Ji, Lu Cai, Yaning Wang, Hailong Zhang and Wendong Song
Materials 2019, 12(2), 241; https://doi.org/10.3390/ma12020241 - 12 Jan 2019
Cited by 103 | Viewed by 8845
Abstract
The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous [...] Read more.
The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon (K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM. The results showed that as-produced K-Ac samples were a porous material with microporous and mesoporous structures and had a high specific surface area of 3160 m2/g, average pore size of about 10 nm, and large pore volume of 2.38 m3/g. Furthermore, batches of K-Ac samples were employed for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration, and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally, the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained. Full article
(This article belongs to the Collection Advanced Biomass-Derived Carbon Materials)
Show Figures

Figure 1

14 pages, 11306 KB  
Article
Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology
by José A. Vázquez, Patrícia Ramos, Jesús Mirón, Jesus Valcarcel, Carmen G. Sotelo and Ricardo I. Pérez-Martín
Mar. Drugs 2017, 15(6), 180; https://doi.org/10.3390/md15060180 - 16 Jun 2017
Cited by 52 | Viewed by 8449
Abstract
The waste generated from shrimp processing contains valuable materials such as protein, carotenoids, and chitin. The present study describes a process at pilot plant scale to recover chitin from the cephalothorax of Penaeus vannamei using mild conditions. The application of a sequential enzymatic–acid–alkaline [...] Read more.
The waste generated from shrimp processing contains valuable materials such as protein, carotenoids, and chitin. The present study describes a process at pilot plant scale to recover chitin from the cephalothorax of Penaeus vannamei using mild conditions. The application of a sequential enzymatic–acid–alkaline treatment yields 30% chitin of comparable purity to commercial sources. Effluents from the process are rich in protein and astaxanthin, and represent inputs for further by-product recovery. As a last step, chitin is deacetylated to produce chitosan; the optimal conditions are established by applying a response surface methodology (RSM). Under these conditions, deacetylation reaches 92% as determined by Proton Nuclear Magnetic Resonance (1H-NMR), and the molecular weight (Mw) of chitosan is estimated at 82 KDa by gel permeation chromatography (GPC). Chitin and chitosan microstructures are characterized by Scanning Electron Microscopy (SEM). Full article
(This article belongs to the Special Issue Marine Chitin)
Show Figures

Graphical abstract

Back to TopTop