Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Pars Tuberalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2037 KiB  
Communication
Influence of Acute Inflammation on the Expression of Clock Genes in the Ovine Pars Tuberalis Under Different Photoperiodic Conditions
by Karolina Wojtulewicz, Monika Tomczyk, Maciej Wójcik, Hanna Antushevich, Joanna Bochenek and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2024, 25(21), 11471; https://doi.org/10.3390/ijms252111471 - 25 Oct 2024
Viewed by 1029
Abstract
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal’s immune status. The melatonin signal processing in PT cells occurs through the presence [...] Read more.
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal’s immune status. The melatonin signal processing in PT cells occurs through the presence of melatonin receptors and the expression of molecular clock genes. This study aimed to define the effects of acute inflammation induced by intravenous administration of lipopolysaccharide (LPS) on the expression of clock genes in the PT of ewes under different photoperiodic conditions. Two analogous experiments were conducted in different photoperiods: short-day and long-day. Both experiments included 24 sheep divided into two groups: day (n = 12) and night (n = 12), further subdivided into a control group (n = 6) and a group treated with LPS (n = 6) at a dose of 400 ng/kg. Under short-day conditions, the expression of clock circadian regulator, basic helix-loop-helix ARNT like 1, cryptochrome circadian regulator (CRY) 1, 2, and casein kinase 1 epsilon genes was lower during inflammation. LPS injection increased expression of the period circadian regulator 1 gene during the night. Under long-day conditions, CRY1 mRNA level was lower during the night, while diurnal CRY2 mRNA expression was decreased after LPS injection. Our results showed that inflammation disturbed the expression of molecular clock genes in the PT; however, this influence was partly dependent on photoperiod conditions. Full article
(This article belongs to the Special Issue Molecular Advances in Circadian Rhythm and Metabolism)
Show Figures

Figure 1

18 pages, 1938 KiB  
Review
Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation
by Eleonore Fröhlich and Richard Wahl
Int. J. Mol. Sci. 2023, 24(14), 11699; https://doi.org/10.3390/ijms241411699 - 20 Jul 2023
Cited by 4 | Viewed by 3975
Abstract
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or [...] Read more.
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe. Full article
Show Figures

Graphical abstract

12 pages, 2714 KiB  
Article
Epigenetic Regulation of miR-25 and Lnc107153 on Expression of Seasonal Estrus Key Gene CHGA in Sheep
by Ran Di, Yekai Fan, Xiaoyun He, Qiuyue Liu, Xiangyu Wang, Yiming Gong, Joram Mwashigadi Mwacharo, Caihong Wei, Yufang Liu and Mingxing Chu
Biology 2023, 12(2), 250; https://doi.org/10.3390/biology12020250 - 4 Feb 2023
Cited by 5 | Viewed by 2481
Abstract
Pituitary pars tuberalis (PT) plays an important role as the transmission center in the seasonal reproduction of animals. It helps convert external photoperiod signals into intrinsic seasonal reproduction signals. In sheep PT, specific expression patterns of several genes (including short photoperiod-induced gene CHGA [...] Read more.
Pituitary pars tuberalis (PT) plays an important role as the transmission center in the seasonal reproduction of animals. It helps convert external photoperiod signals into intrinsic seasonal reproduction signals. In sheep PT, specific expression patterns of several genes (including short photoperiod-induced gene CHGA and long photoperiod genes EYA3 and TSHβ) under different photoperiods are crucial characteristics during this signal transduction. Recent studies have revealed the role of epigenetics in regulating the expression of seasonal reproductive key genes. Therefore, we explored whether microRNAs and LncRNAs regulated the expressions of the above key genes. Firstly, the expression of miR-25 and CHGA showed a significant negative correlation in sheep PT. Results of the dual luciferase reporter assay and miR-25 overexpression indicated that miR-25 could inhibit the expression of CHGA by specifically binding to its 3′UTR region in pituitary cells. Then, expression negative correlation and dual luciferase reporter analyses were used to screen and identify the candidate LncRNA (Lnc107153) targeted by miR-25. Finally, the results of fluorescence in situ hybridization and Lnc107153 overexpression suggested that Lnc107153 and miR-25 were involved in the epigenetic regulation of CHGA expression. However, the expressions of EYA3 and TSHβ were not regulated by miRNAs. These results will provide new insights into the epigenetic regulatory network of key genes in sheep seasonal reproduction. Full article
(This article belongs to the Special Issue New Advances and Insights in Animal Genetics and Breeding)
Show Figures

Figure 1

12 pages, 446 KiB  
Article
Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants—Ex Vivo Study
by Karolina Wojtulewicz, Dorota Tomaszewska-Zaremba and Andrzej Przemysław Herman
Molecules 2017, 22(11), 1933; https://doi.org/10.3390/molecules22111933 - 10 Nov 2017
Cited by 12 | Viewed by 4012
Abstract
The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT). However, it was previously found [...] Read more.
The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT). However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH) secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg) or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with ‘pure’ medium 199; II, treated with gonadotropin-releasing hormone (GnRH) (100 pg/mL); III, treated with melatonin (10 nmol/mL); and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05) GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05) GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals. Full article
Show Figures

Graphical abstract

Back to TopTop