Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Papio spp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 658 KiB  
Article
Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia
by Mohammed Abdullah Alqumber
Microorganisms 2024, 12(12), 2421; https://doi.org/10.3390/microorganisms12122421 - 25 Nov 2024
Viewed by 1132
Abstract
This study investigates parasitic and bacterial pathogens present in Hamadryas baboons (Papio hamadryas) and humans in southwestern Saudi Arabia. Fecal samples were collected from Hamadryas baboons (n = 999) from three city peripheries and humans from city centers (n [...] Read more.
This study investigates parasitic and bacterial pathogens present in Hamadryas baboons (Papio hamadryas) and humans in southwestern Saudi Arabia. Fecal samples were collected from Hamadryas baboons (n = 999) from three city peripheries and humans from city centers (n = 1998) and peripheries (n = 1998) of southwestern and eastern Saudi cities. Parasitic examinations and bacterial cultures were conducted on these samples. Key findings include the identification of various parasitic and bacterial pathogens, with notable prevalences of Staphylococcus aureus (71.37% in baboons, 71.51% in humans), Blastocystis hominis (42.24% in baboons, 17.85% in humans), Cryptosporidium spp. (40.14% in baboons, 12.6% in humans), hookworms (37.44% in baboons, 18.57% in humans), Strongyloides spp. (37.34% in baboons, 17.39% in humans), Enterobius vermicularis (36.34% in baboons, 11.18% in humans), and Campylobacter spp. (29.73% in baboons, 1.86% in humans). Additionally, the prevalences of these microorganisms in human populations coexisting with baboons in southwestern city peripheries were 75.47%, 25.22%, 23.62%, 26.33%, 22.22%, 15.11%, and 3.8%, respectively. To further characterize bacterial isolates, 16S rRNA gene sequencing was used, suggesting potential zoonotic and anthroponotic cycles. The results highlight significant pathogen prevalence among both baboons and human populations in proximity to baboon habitats, indicating a potential public health risk. However, shared environmental sources, such as contaminated water, were not thoroughly assessed and could play a role in pathogen transmission. The study’s focus on 18 different parasitic and bacterial pathogens allowed for the targeting of prevalent and indicative markers of zoonotic and anthroponotic transmission. In conclusion, these baseline data are crucial for the design of advanced studies to further investigate the zoonotic and anthroponotic transmission dynamics and the environmental factors influencing pathogen prevalence. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

15 pages, 1283 KiB  
Article
Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio
by Julia Rivero, Rocío Callejón and Cristina Cutillas
Life 2021, 11(2), 126; https://doi.org/10.3390/life11020126 - 6 Feb 2021
Cited by 7 | Viewed by 2931
Abstract
Trichuriasis is among the most prevalent worldwide parasitism caused by helminths. For many years, Trichuris spp. have been described with a relatively narrow range of both morphological and biometrical features. The use of the complete mitochondrial genome (mitogenome) is an alternative and powerful [...] Read more.
Trichuriasis is among the most prevalent worldwide parasitism caused by helminths. For many years, Trichuris spp. have been described with a relatively narrow range of both morphological and biometrical features. The use of the complete mitochondrial genome (mitogenome) is an alternative and powerful molecular method for inferring phylogenies. Here, we present an overview of the contributions of mitogenome for Trichuris spp. from human and non-human primates. In addition, we carry out structural and phylogenetic comparative analyses with genomes of Trichuris species available in public datasets. The complete mt genomes of Trichuris trichiura and Trichuris sp. from Macaca sylvanus and T. trichiura from Papio papio are 14,091 bp, 14,047 bp and 14,089 bp in length, respectively. The three mt genomes are circular and consist of 37 genes—13 PCGs (cox1–3, nad1–6, nad4L, atp6, atp8 and cob), 22 transfer RNA genes (tRNAs), and two rRNAs (rrnL and rrnS). The molecular evidence presented here supports the hypothesis that T. trichiura de M. sylvanus (TMF31) and T. trichiura de P. papio (TPM1) were similar but genetically different with respect to Trichuris sp. from macaques (TMM5). The phylogenetic study also supported the evolution of the different Trichuris species. In conclusion, we suggest the existence of two cryptic species parasitizing M. sylvanus. Full article
(This article belongs to the Special Issue Trichuris: Other World, Other Life)
Show Figures

Figure 1

20 pages, 796 KiB  
Article
Parasitic Infections in African Humans and Non-Human Primates
by Hacène Medkour, Inestin Amona, Younes Laidoudi, Bernard Davoust, Idir Bitam, Anthony Levasseur, Jean Akiana, Georges Diatta, Liliana Pacheco, Slim Gorsane, Cheikh Sokhna, Raquel Adriana Hernandez-Aguilar, Amanda Barciela, Florence Fenollar, Didier Raoult and Oleg Mediannikov
Pathogens 2020, 9(7), 561; https://doi.org/10.3390/pathogens9070561 - 11 Jul 2020
Cited by 28 | Viewed by 7048
Abstract
Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their [...] Read more.
Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals’ health. Full article
(This article belongs to the Special Issue Animal Parasitic Diseases)
Show Figures

Figure 1

17 pages, 476 KiB  
Review
The Baboon (Papio spp.) as a Model of Human Ebola Virus Infection
by Donna L. Perry, Laura Bollinger and Gary L.White
Viruses 2012, 4(10), 2400-2416; https://doi.org/10.3390/v4102400 - 23 Oct 2012
Cited by 28 | Viewed by 8549
Abstract
Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. [...] Read more.
Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. This review will summarize what is known about the pathogenesis of EBOV infection in baboons compared to EBOV infection in humans and other Old World nonhuman primates. In addition, we will discuss how closely the baboon model recapitulates human EBOV infection. We will also review some of the housing requirements and behavioral attributes of baboons compared to other Old World nonhuman primates. Due to the lack of data available on the pathogenesis of Marburg virus (MARV) infection in baboons, discussion of the pathogenesis of MARV infection in baboons will be limited. Full article
(This article belongs to the Special Issue Advances in Filovirus Research 2012)
Back to TopTop