Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PVDF-Nafion blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5568 KiB  
Article
A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design
by Liying Ma, Hongxia Song, Xiaofei Gong, Lu Chen, Jiangning Gong, Zhijiao Chen, Jing Shen and Manqi Gu
Polymers 2024, 16(17), 2480; https://doi.org/10.3390/polym16172480 - 30 Aug 2024
Cited by 3 | Viewed by 1226
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with [...] Read more.
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10−7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton’s reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 6074 KiB  
Article
Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting
by Jaehoon Jung, Soyeong Choi, Ilsuk Kang and Kiwoon Choi
Nanomaterials 2024, 14(5), 478; https://doi.org/10.3390/nano14050478 - 6 Mar 2024
Cited by 1 | Viewed by 1739
Abstract
Exploring the utilization of ion exchange membranes (IEMs) in salinity gradient energy harvesting, a technique that capitalizes on the salinity difference between seawater and freshwater to generate electricity, this study focuses on optimizing PVDF to Nafion ratios to create ultra-thin membranes. Specifically, our [...] Read more.
Exploring the utilization of ion exchange membranes (IEMs) in salinity gradient energy harvesting, a technique that capitalizes on the salinity difference between seawater and freshwater to generate electricity, this study focuses on optimizing PVDF to Nafion ratios to create ultra-thin membranes. Specifically, our investigation aligns with applications such as reverse electrodialysis (RED), where IEMs facilitate selective ion transport across salinity gradients. We demonstrate that membranes with reduced Nafion content, particularly the 50:50 PVDF:Nafion blend, retain high permselectivity comparable to those with higher Nafion content. This challenges traditional understandings of membrane design, highlighting a balance between thinness and durability for energy efficiency. Voltage–current analyses reveal that, despite lower conductivity, the 50:50 blend shows superior short-circuit current density under salinity gradient conditions. This is attributed to effective ion diffusion facilitated by the blend’s unique microstructure. These findings suggest that blended membranes are not only cost-effective but also exhibit enhanced performance for energy harvesting, making them promising candidates for sustainable energy solutions. Furthermore, these findings will pave the way for advances in membrane technology, offering new insights into the design and application of ion exchange membranes in renewable energy. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage)
Show Figures

Figure 1

12 pages, 3321 KiB  
Article
Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries
by Tae Yang Son, Kwang Seop Im, Ha Neul Jung and Sang Yong Nam
Polymers 2021, 13(16), 2827; https://doi.org/10.3390/polym13162827 - 23 Aug 2021
Cited by 11 | Viewed by 3702
Abstract
In this study, blended anion exchange membranes were prepared using polyphenylene oxide containing quaternary ammonium groups and polyvinylidene fluoride. A polyvinylidene fluoride with high hydrophobicity was blended in to lower the vanadium ion permeability, which increased when the hydrophilicity increased. At the same [...] Read more.
In this study, blended anion exchange membranes were prepared using polyphenylene oxide containing quaternary ammonium groups and polyvinylidene fluoride. A polyvinylidene fluoride with high hydrophobicity was blended in to lower the vanadium ion permeability, which increased when the hydrophilicity increased. At the same time, the dimensional stability also improved due to the excellent physical properties of polyvinylidene fluoride. Subsequently, permeation of the vanadium ions was prevented due to the positive charge of the anion exchange membrane, and thus the permeability was relatively lower than that of a commercial proton exchange membrane. Due to the above properties, the self-discharge of the blended anion exchange membrane (30.1 h for QA–PPO/PVDF(2/8)) was also lower than that of the commercial proton exchange membrane (27.9 h for Nafion), and it was confirmed that it was an applicable candidate for vanadium redox flow batteries. Full article
(This article belongs to the Special Issue Advanced Polymers for Electrochemical Applications)
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone
by Surya Subianto, Namita Roy Choudhury and Naba Dutta
Nanomaterials 2014, 4(1), 1-18; https://doi.org/10.3390/nano4010001 - 23 Dec 2013
Cited by 34 | Viewed by 10546
Abstract
Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more [...] Read more.
Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area. Full article
(This article belongs to the Special Issue Nanomaterials in Energy Conversion and Storage)
Show Figures

Graphical abstract

Back to TopTop