Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PSA tail gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2917 KiB  
Article
CO2 Removal in Hydrogen Production Plants
by Stefania Moioli and Laura A. Pellegrini
Energies 2024, 17(13), 3089; https://doi.org/10.3390/en17133089 - 22 Jun 2024
Cited by 2 | Viewed by 1966
Abstract
Hydrogen is an industrial raw material both for the production of chemicals and for oil refining with hydrotreating. It is the subject of increasing attention for its possible use as an energy carrier and as a flexible energy storage medium. Its production is [...] Read more.
Hydrogen is an industrial raw material both for the production of chemicals and for oil refining with hydrotreating. It is the subject of increasing attention for its possible use as an energy carrier and as a flexible energy storage medium. Its production is generally accomplished in Steam Methane Reforming (SMR) plants, where a gaseous mixture of CO and H2, with a limited number of other species, is obtained. The process of production and purification generates relevant amounts of carbon dioxide, which needs to be removed due to downstream process requirements or to limit its emissions to the atmosphere. A work by IEAGHG focused on the study of a state-of-the-art Steam Methane Reforming plant producing 100 kNm3/h of H2 and considered chemical absorption with MethylDiEthanolAmine (MDEA) solvent for removing carbon dioxide from the PSA tail gas in a baseline scheme composed of the absorber, one flash vessel and the regeneration column. This type of process is characterized by high energy consumption, in particular at the reboiler of the regeneration column, usually operated by employing steam, and modifications to the baseline scheme can allow for a reduction of the operating costs, though with an increase in the complexity of the plant. This work analyses three configurations of the treatment section of the off gas obtained after the purification of the hydrogen stream in the Pressure Swing Adsorption unit with the aim of selecting the one which minimizes the overall costs so as to further enhance Carbon Capture and Storage in non-power industries as well. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy III)
Show Figures

Figure 1

27 pages, 3772 KiB  
Article
CO2 Capture and Enhanced Hydrogen Production Enabled by Low-Temperature Separation of PSA Tail Gas: A Detailed Exergy Analysis
by David Berstad, Julian Straus and Truls Gundersen
Energies 2024, 17(5), 1072; https://doi.org/10.3390/en17051072 - 23 Feb 2024
Cited by 4 | Viewed by 2545
Abstract
Hydrogen from natural gas reforming can be produced efficiently with a high CO2 capture rate. This can be achieved through oxygen-blown autothermal reforming as the core technology, combined with pressure-swing adsorption for hydrogen purification and refrigeration-based tail gas separation for CO2 [...] Read more.
Hydrogen from natural gas reforming can be produced efficiently with a high CO2 capture rate. This can be achieved through oxygen-blown autothermal reforming as the core technology, combined with pressure-swing adsorption for hydrogen purification and refrigeration-based tail gas separation for CO2 capture and recirculation of residual hydrogen, carbon monoxide, and methane. The low-temperature tail gas separation section is presented in detail. The main objective of the paper is to study and quantify the exergy efficiency of this separation process in detail. To achieve this, a detailed exergy analysis is conducted. The irreversibilities in 42 different process components are quantified. In order to provide transparent verification of the consistency of exergy calculations, the total irreversibility rate is calculated by two independent approaches: Through the bottom-up approach, all individual irreversibilities are added to obtain the total irreversibility rate. Through the top-down approach, the total irreversibility rate is calculated solely by the exergy flows crossing the control volume boundaries. The consistency is verified as the comparison of results obtained by the two methods shows a relative deviation of 4·107. The exergy efficiency of the CO2 capture process is calculated, based on two different definitions. Both methods give a baseline exergy efficiency of 58.38%, which indicates a high degree of exergy utilisation in the process. Full article
(This article belongs to the Section J3: Exergy)
Show Figures

Figure 1

19 pages, 3958 KiB  
Article
Design and Economic Evaluation of a Hybrid Membrane Separation Process from Multiple Refinery Gases Using a Graphic Synthesis Method
by Juan Aron Stron Perez, Andi Cheng, Xuehua Ruan, Xiaobin Jiang, Hanli Wang, Gaohong He and Wu Xiao
Processes 2022, 10(5), 820; https://doi.org/10.3390/pr10050820 - 21 Apr 2022
Cited by 4 | Viewed by 2815
Abstract
Petrochemical tail gases have various components and many separation methods, thus there are many possible design schemes, making it difficult to determine the optimal scheme. In this work, a graphic synthesis method was used to design a hybrid multi-input refinery gas separation process [...] Read more.
Petrochemical tail gases have various components and many separation methods, thus there are many possible design schemes, making it difficult to determine the optimal scheme. In this work, a graphic synthesis method was used to design a hybrid multi-input refinery gas separation process consisting of membranes, pressure swing adsorption (PSA), shallow condensation (SC), and distillation units for the production of valuable products which include H2, C2, LPG, and C5+. Ten refinery gases with different compositions were visualized and represented with vector couples in a triangular coordinate system. Firstly, according to the characteristics of the refinery gases, the feeds located in the same region of the triangular coordinate system were merged to simplify the number of input streams, then ten original input streams were combined into two mixed streams. Secondly, the optimal separation sequence was determined by using the unit selection rules of a graphic synthesis method. Thirdly, the process was simulated in UniSim Design and the process parameters were determined by sensitivity analysis. Finally, economic assessments were carried out, which led to an annual gross product profit of USD 38.62 × 106 and a payback period of less than 4 months. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 14749 KiB  
Article
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
by Mauro Luberti, Alexander Brown, Marco Balsamo and Mauro Capocelli
Energies 2022, 15(3), 1091; https://doi.org/10.3390/en15031091 - 1 Feb 2022
Cited by 13 | Viewed by 3640
Abstract
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, [...] Read more.
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources, including refining, chemical, petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change, even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit, it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions, such as purge-to-feed ratio and desorption pressure, were evaluated in relation to CO2 purity, CO2 recovery, bed productivity and specific energy consumption. We found that conventional cycle configurations, namely a 2-bed, 4-step Skarstrom cycle and a 2-bed, 6-step modified Skarstrom cycle with pressure equalization, were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90%, respectively. Therefore, the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2. Full article
Show Figures

Figure 1

Back to TopTop