Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PDGFRβ inhibitor angiogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2605 KiB  
Article
Fibroblast Growth Factor 9 Inhibited Apoptosis in Random Flap via the ERK1/2–Nrf2 Pathway to Improve Tissue Survival
by Dupiao Zhang, Mazhar Ali Raza, Jianpeng Chen, Baolong Li, Wenbin Liu, Tao Han, Hede Yan and Liangfu Jiang
J. Clin. Med. 2023, 12(3), 809; https://doi.org/10.3390/jcm12030809 - 19 Jan 2023
Cited by 10 | Viewed by 2181
Abstract
Background: The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Fibroblast growth factor 9 (FGF9) was reported to exert a protective effect against myocardial damage and cerebral ischemia injury, but the impact of FGF9 in random [...] Read more.
Background: The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Fibroblast growth factor 9 (FGF9) was reported to exert a protective effect against myocardial damage and cerebral ischemia injury, but the impact of FGF9 in random flap survival is still unclear. In this study, we used a mouse model of random flaps to verify that FGF9 can directly increase flap survival area and blood flow intensity by promoting angiogenesis. Materials and Methods: In total, 84 male C57BL/6 mice weighing between 22 and 25 g were randomly divided into three groups (n = 28 each group). After skin flap operation, one group served as a control, a treatment group received FGF9, and a treatment group received FGF9+U0126. All flap samples were incised on postoperative day 7. Results: Our results showed that flap survival was significantly increased in the FGF9 group compared with that in the control group. This protective function was restrained by U0126. The results of histopathology, laser Doppler, and fluorescent staining all showed significant increases in capillary count, collagen deposition, and angiogenesis. FGF9 also significantly increased the expression of antioxidant stress proteins SOD1, eNOS, HO-1, vascular marker proteins CD31, VE cadherin, and pericyte marker protein PDGFRβ. Western blot showed that the phosphorylation degree of ERK1/2 increased after FGF9 treatment, and the expression of Nrf2, a downstream factor, was u-regulated. Western blot and immunofluorescence results of apoptosis-related proteins cleaved caspase-3, BAX, and Bcl2 showed that FGF9 inhibited apoptosis. ERK inhibitor U01926 reduced the beneficial effects of FGF9 on skin flap survival, including promoting angiogenesis, and showing antiapoptosis and antioxidative stress activities. Conclusions: Exogenous FGF9 stimulates angiogenesis of random flap and survival of tissue. the impact of FGF9 is closely linked to the prevention of oxidative stress mediated by ERK1/2-Nrf2. In the function of FGF9 in promoting effective angiogenesis, there may be a close interaction in the FGF9–FGFR–PDGFR–ERK–VE cadherin pathway. In particular, PDGFR and VE cadherin may interact. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

23 pages, 1521 KiB  
Review
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers
by Leonard Kaps and Detlef Schuppan
Cells 2020, 9(9), 2027; https://doi.org/10.3390/cells9092027 - 3 Sep 2020
Cited by 112 | Viewed by 16852
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, [...] Read more.
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver. Full article
(This article belongs to the Special Issue Nanoparticles in Cancer Immunotherapy)
Show Figures

Graphical abstract

19 pages, 6621 KiB  
Article
Synthesis and Evaluation of Novel 2-Pyrrolidone-Fused (2-Oxoindolin-3-ylidene)methylpyrrole Derivatives as Potential Multi-Target Tyrosine Kinase Receptor Inhibitors
by Ting-Hsuan Yang, Chun-I Lee, Wen-Hsin Huang and An-Rong Lee
Molecules 2017, 22(6), 913; https://doi.org/10.3390/molecules22060913 - 31 May 2017
Cited by 26 | Viewed by 7885
Abstract
Signaling pathways of VEGFs and PDGFs are crucial in tumor angiogenesis, which is essential in solid tumor progression and metastasis. This study reports our strategy for designing and synthesizing a series of novel 2-pyrrolidone-fused (2-oxoindolin-3-ylidene)methylpyrrole derivatives as potential multi-target tyrosine kinase receptor inhibitors. [...] Read more.
Signaling pathways of VEGFs and PDGFs are crucial in tumor angiogenesis, which is essential in solid tumor progression and metastasis. This study reports our strategy for designing and synthesizing a series of novel 2-pyrrolidone-fused (2-oxoindolin-3-ylidene)methylpyrrole derivatives as potential multi-target tyrosine kinase receptor inhibitors. The target compounds were obtained by condensation of 5-substituted oxindoles with N-substituted 2-pyrrolidone aldehyde 7 in satisfactory yields. Of these, 11 and 12 had the highest potency and, compared to sunitinib, showed: (1) significant increase in anti-proliferation of various cancer cells with a favorable selective index (SI); (2) higher inhibitory potency against both VEGFR-2 and PDGFRβ. The molecular modeling results showed that, in terms of VEGFR-2 binding, the synthesized products had a similar binding mode to sunitinib but with tighter interaction. Full article
(This article belongs to the Special Issue Kinase Inhibitors)
Show Figures

Graphical abstract

28 pages, 2001 KiB  
Review
Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy
by Marius Raica and Anca Maria Cimpean
Pharmaceuticals 2010, 3(3), 572-599; https://doi.org/10.3390/ph3030572 - 11 Mar 2010
Cited by 241 | Viewed by 22019
Abstract
Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF), fibroblast growth factor (FGF)-2 or platelet-derived growth factors (PDGF). From [...] Read more.
Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF), fibroblast growth factor (FGF)-2 or platelet-derived growth factors (PDGF). From these, VEGF and FGF-2 were extensively investigated and it was shown that they significantly contribute to the induction and progression of angiogenesis. A lot of evidence has been accumulated in last 10 years that supports the contribution of PDGF/PDGFR axis in developing angiogenesis in both normal and tumoral conditions. The crucial role of PDGF-B and PDGFR-β in angiogenesis has been demonstrated by gene targeting experiments, and their expression correlates with increased vascularity and maturation of the vascular wall. PDGF and their receptors were identified in a large variety of human tumor cells. In experimental models it was shown that inhibition of PDGF reduces interstitial fluid pressure in tumors and enhances the effect of chemotherapy. PDGFR have been involved in the cardiovascular development and their loss leads to a disruption in yolk sac blood vessels development. PDGFRβ expression by pericytes is necessary for their recruitment and integration in the wall of tumor vessels. Endothelial cells of tumor-associated blood vessels can express PDGFR. Based on these data, it was suggested the potential benefit of targeting PDGFR in the treatment of solid tumors. The molecular mechanisms of PDGF/PDGFR-mediated angiogenesis are not fully understood, but it was shown that tyrosine kinase inhibitors reduce tumor growth and angiogenesis in experimental xenograft models, and recent data demonstrated their efficacy in chemoresistant tumors. The in vivo effects of PDGFR inhibitors are more complex, based on the cross-talk with other angiogenic factors. In this review, we summarize data regarding the mechanisms and significance of PDGF/PDGFR expression in normal conditions and tumors, focusing on this axis as a potential target for antitumor and antiangiogenic therapy. Full article
(This article belongs to the Special Issue Angiogenesis Inhibitors)
Show Figures

Figure 1

Back to TopTop